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Abstract: The paper discusses presently experienced problems concerned with 
forecasting the fatigue life of welded joints in terms of the spectral method defined 
in the frequency domain. In addition, the article presents the primary assump-
tions of the spectral method and describes the issue related to the recognition 
of the mean stress value and loads above the material yield point.
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Introduction
For many years, the determination of the fa-
tigue service life of welded joints has consti-
tuted one of the crucial issues related to the 
operation of welded structures. The quality of 
calculated results concerning the fatigue service 
life of joints is strictly connected with engineer’s 
own experience and structure-related informa-
tion obtainable without performing laboratory 
tests. It is assumed that calculations are per-
formed for the so-called constant amplitude 
cycles. Such cases require the assumption of 
an appropriate hypothesis related to the accu-
mulation of fatigue failures and the determina-
tion of a forecast joint operation time expressed 
through the number of cycles or hours. How-
ever, the above-presented situation rarely re-
flects actual operating conditions, where loads 
are of changeable amplitude nature and fre-
quently exceed a previously assumed ampli-
tude limit adopted for calculations. In terms 
of changeable amplitude loads it is necessary 
to use cycle counting methods, appropriately 

arranging values of amplitudes and their effect 
on fatigue service life. To this end, it is neces-
sary to know the history of the load or the fore-
cast time spectrum of the load. The aforesaid 
data can be obtained by performing extensor-
metric measurements, measurements involving 
the use of acceleration sensors or by applying 
video methods. However, the above-named 
methods are extremely time-consuming and, 
consequently, costly as they require the perfor-
mance of very long measurements affecting the 
accuracy of calculated results. Regrettably, even 
a long measurement cannot provide a repre-
sentative mean value, therefore it is necessary 
to perform several series of measurements at 
various spots of the structure (multiplying the 
costs of such an action). Naturally, a question 
that arises is whether there is a cheaper meth-
od enabling the obtainment of statistically rele-
vant values concerning the stochastic history of 
the load affecting a given structure. A method 
which does make it possible to take into con-
sideration the random nature of the load and 
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satisfy the condition related to the certain aver-
aging of the process  is the spectral method of 
fatigue service life determination. Important-
ly, the aforesaid method is significantly faster 
than the cycle counting method as a time re-
quired for calculating a single cycle constitutes 
between 1/10 and 1/20 of a time required to cal-
culate time domain. The aforesaid method en-
ables the obtainment of the so-called power 
spectral density (PSD) corresponding to the in-
finite number of courses in time. An exempla-
ry graph presenting the power spectral density 
of the course of load is presented in Figure 1.

In relation to this method, the distribution 
of load amplitudes is of stationary and Gaussi-
an nature, which is additionally consistent with 
the theory of stochastic processes expressed, 
among others, by J. S. Bendat and A. G. Piersol 
[1]. However, in reality it is not always possible 
to encounter such ideal random processes. Usu-
ally, various processes are non-stationary and 
non-Gaussian. Therefore, also the classical ap-
proach involving the use of the spectral meth-
od will require the correction of calculations by 
making allowances for disturbances in relation 
to ideal conditions. Recent years have seen the 
significant development of the aforesaid meth-
od in works by C. Bracessie et al. [2], A. Niesłony 
and M. Böhm [3,4]. However, the above-named 

phenomena are connected with external loads, 
not including welding process-triggered loads. 
Because of its high temperature and shrinkage in 
the heat affected zone, the welding process may 
generate additional stresses within the weld. The 
above-named stresses are defined in the process 
of determining fatigue service life using models 
taking into consideration the mean stress val-
ue such as, for instance the Goodman model 
or the Gerber model. This article discusses the 
limitations of the classical method used for the 
determination of the fatigue service life of weld-
ed joints in the frequency domain and presents 
currently used solutions making it possible to 
identify the effect of the mean stress value as 
well as the phenomenon of the non-linearity and 
non-gaussivity of the process.

Spectral-method based determination 
of fatigue service life 
In terms of fatigue service life determined using 
the spectral method, the averaging of the load 
is related to the stochastic nature of the process. 
The above named-method consists in the gener-
ation of the power spectral density (PSD) of the 
load for a given mathematical model or by us-
ing a time course defined as a signal. The pow-
er spectral density of a random signal describes 
the general frequency structure of a process 
by means of the spectral density of the root-
mean-square value of a physical signal under 
consideration. Using the narrow-range band-
pass filter and averaging the signal at the filter 
output, the above-named value can be identi-
fied in relation to the range from f to f+∆f [1]: 

where Ψx – root-mean-square value of course 
x(t), T – time of observation, x(t, f, ∆f) – com-
ponent of function x(t) within the frequency 
range from f to f + ∆f.

For low values of ∆f , formula (1) adopts the 
function of one sided PSD and adopts the fol-
lowing form:

Fig. 1. Exemplary power spectral density related to the 
load curve
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Afterwards, it is necessary to determine the so-
called spectral moments, used to identify the 
distribution of probability density in relation 
to a given model

for k=0, 1, 2, 3.
The application of the appropriate distribu-

tion of stress amplitude probability density is 
strictly connected with a type of an element to 
which loads will be subjected. There are many 
examples of such distributions of probability 
density related to a specific industrial sector 
[5–8]. However, there are also widely applicable 
distributions suitable for stationary Gaussian 
processes. An example of the aforesaid distribu-
tions include the Rayleigh distribution recom-
mended to be used with the spectral moments 
by J. S. Bendat [9]:

The model developed by T. Dirlik [10] was the 
first one to take into consideration the so-called 
tail for low values of stress amplitudes: 

where K, R and Z are parameters determined 
using spectral moments and where C and m- 
are constants of the Basquin curve, b- tem-
pering function dependent on power spectral 
density. In turn, νp is determined using the fol-
lowing dependence:

Finally, values obtained using the above-pre-
sented calculations are entered into the ulti-
mate formula for the determination of fatigue 

service life:

where p(σa) – distribution of stress amplitude 
probability density, N(σa) – number of cycles 
determined using curves S-N in relation to a 
given amplitude of stress σa, M+ expected num-
ber of peaks at a time unit determined using 
the following dependence: 

Internal stresses in terms of the 
spectral method 
In relation to welded joints, an important fact 
concerning the spectral method is the fact 
that it does not directly take into considera-
tion mean stresses, known to play an enormous 
role as far as welded joints are concerned. Fre-
quently, when determining fatigue service life, 
internal stresses are taken into consideration as 
a mean value. Usually, such stresses are pres-
ent in the area of the heat affected zone, which, 
as a result of previously adjusted welding pro-
cess parameters, may be characterised by com-
pressive or tensile internal stresses. One of the 
first works concerned with this phenomenon 
was by D. P. Kihl and S. Sarkani [11], who, using 
crosswise specimens (Fig. 2) joined with a fillet 
weld, undertook to determine fatigue service 
life applying the spectral method and taking 
the mean value into consideration:

where Ncal – number of cycles preceding fatigue 
crack initiation, Rm – tensile strength, A and m – 
constants determined using the Wöhler dia-
gram for a constant amplitude load.

The above-presented approach enabled the 
determination of a number of cycles using in-
formation obtained from power spectral densi-
ty and the distribution-related gamma function. 
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𝐾𝐾4 + 𝐾𝐾2𝑍𝑍

𝑅𝑅2 𝑒𝑒
−𝑍𝑍2
2𝑅𝑅2 + 𝐾𝐾3𝑍𝑍𝑒𝑒

−𝑍𝑍2
2 ] 

 

 

 𝜈𝜈𝑝𝑝 =
1
2𝜋𝜋√

𝜉𝜉4
𝜉𝜉2

 

 

 𝑇𝑇𝑐𝑐𝑎𝑎𝑐𝑐 =
1

𝑀𝑀+ ∫ 𝑝𝑝(𝑝𝑝𝑎𝑎)
𝑁𝑁(𝑝𝑝𝑎𝑎)

𝑑𝑑𝜎𝜎𝑎𝑎
∞
0

 

 

 𝑀𝑀+ = √𝜉𝜉4
𝜉𝜉2

 

 𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐 = 𝑒1 − 𝜎𝜎𝑚𝑚
𝑅𝑅𝑚𝑚
)
−𝑚𝑚

∙ 2
𝑚𝑚
𝐴𝐴 ∙(√𝜉𝜉0)

𝑚𝑚
∙𝐴𝐴

𝛤𝛤𝑒1−𝑚𝑚2 )
 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = [𝐾𝐾(𝑝𝑝𝑚𝑚𝑓 𝑃𝑃)]2𝐺𝐺𝑥𝑥(𝑓𝑓) 
 

 𝐾𝐾𝐺𝐺𝐺𝐺 =
1

1−𝑒𝑝𝑝𝑚𝑚𝑅𝑅𝑚𝑚)
2     𝑆𝑆𝐾𝐾 =

𝜉𝜉4
𝜉𝜉22
− 2   𝐶𝐶𝐹𝐹 =

|𝑆𝑆𝐾𝐾𝑝𝑝𝐾𝐾𝑎𝑎𝐾𝐾|
𝑆𝑆𝐾𝐾𝐾𝐾𝑚𝑚𝐾𝐾

 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = 𝐶𝐶𝐹𝐹 ⋅ 𝐺𝐺𝑥𝑥(𝑓𝑓) 

1 
 

 𝛹𝛹𝑥𝑥(𝑓𝑓𝑓 𝑓𝑓𝑓) = lim𝑇𝑇𝑇𝑇
1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡, 

 

 

 𝐺𝐺𝑥𝑥(𝑓𝑓) = lim𝑓𝑓𝑓𝑇0
𝛹𝛹𝑥𝑥(𝑓𝑓𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓 =𝛹𝛹𝑥𝑥 = lim𝑓𝑓𝑓𝑇0
1
𝑓𝑓𝑓 [lim𝑇𝑇𝑇𝑇

1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡𝑑 

 

 

 𝜉𝜉𝑘𝑘 = ∫ 𝐺𝐺𝑥𝑥(𝑓𝑓)
∞
0 𝑓𝑓𝑘𝑘𝑑𝑑𝑓𝑓 

 

 𝑝𝑝(𝑝𝑝𝑎𝑎) =
𝜎𝜎𝑎𝑎
𝜉𝜉0
𝑒𝑒𝑥𝑥𝑝𝑝 𝑒−𝜎𝜎𝑎𝑎

2

2𝜉𝜉0
) 

 

 

 𝑝𝑝(𝑝𝑝) = 1
2√𝜉𝜉0

[𝐾𝐾1𝐾𝐾4 𝑒𝑒
−𝑍𝑍
𝐾𝐾4 + 𝐾𝐾2𝑍𝑍

𝑅𝑅2 𝑒𝑒
−𝑍𝑍2
2𝑅𝑅2 + 𝐾𝐾3𝑍𝑍𝑒𝑒

−𝑍𝑍2
2 ] 

 

 

 𝜈𝜈𝑝𝑝 =
1
2𝜋𝜋√

𝜉𝜉4
𝜉𝜉2

 

 

 𝑇𝑇𝑐𝑐𝑎𝑎𝑐𝑐 =
1

𝑀𝑀+ ∫ 𝑝𝑝(𝑝𝑝𝑎𝑎)
𝑁𝑁(𝑝𝑝𝑎𝑎)

𝑑𝑑𝜎𝜎𝑎𝑎
∞
0

 

 

 𝑀𝑀+ = √𝜉𝜉4
𝜉𝜉2

 

 𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐 = 𝑒1 − 𝜎𝜎𝑚𝑚
𝑅𝑅𝑚𝑚
)
−𝑚𝑚

∙ 2
𝑚𝑚
𝐴𝐴 ∙(√𝜉𝜉0)

𝑚𝑚
∙𝐴𝐴

𝛤𝛤𝑒1−𝑚𝑚2 )
 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = [𝐾𝐾(𝑝𝑝𝑚𝑚𝑓 𝑃𝑃)]2𝐺𝐺𝑥𝑥(𝑓𝑓) 
 

 𝐾𝐾𝐺𝐺𝐺𝐺 =
1

1−𝑒𝑝𝑝𝑚𝑚𝑅𝑅𝑚𝑚)
2     𝑆𝑆𝐾𝐾 =

𝜉𝜉4
𝜉𝜉22
− 2   𝐶𝐶𝐹𝐹 =

|𝑆𝑆𝐾𝐾𝑝𝑝𝐾𝐾𝑎𝑎𝐾𝐾|
𝑆𝑆𝐾𝐾𝐾𝐾𝑚𝑚𝐾𝐾

 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = 𝐶𝐶𝐹𝐹 ⋅ 𝐺𝐺𝑥𝑥(𝑓𝑓) 

1 
 

 𝛹𝛹𝑥𝑥(𝑓𝑓𝑓 𝑓𝑓𝑓) = lim𝑇𝑇𝑇𝑇
1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡, 

 

 

 𝐺𝐺𝑥𝑥(𝑓𝑓) = lim𝑓𝑓𝑓𝑇0
𝛹𝛹𝑥𝑥(𝑓𝑓𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓 =𝛹𝛹𝑥𝑥 = lim𝑓𝑓𝑓𝑇0
1
𝑓𝑓𝑓 [lim𝑇𝑇𝑇𝑇

1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡𝑑 

 

 

 𝜉𝜉𝑘𝑘 = ∫ 𝐺𝐺𝑥𝑥(𝑓𝑓)
∞
0 𝑓𝑓𝑘𝑘𝑑𝑑𝑓𝑓 

 

 𝑝𝑝(𝑝𝑝𝑎𝑎) =
𝜎𝜎𝑎𝑎
𝜉𝜉0
𝑒𝑒𝑥𝑥𝑝𝑝 𝑒−𝜎𝜎𝑎𝑎

2

2𝜉𝜉0
) 

 

 

 𝑝𝑝(𝑝𝑝) = 1
2√𝜉𝜉0

[𝐾𝐾1𝐾𝐾4 𝑒𝑒
−𝑍𝑍
𝐾𝐾4 + 𝐾𝐾2𝑍𝑍

𝑅𝑅2 𝑒𝑒
−𝑍𝑍2
2𝑅𝑅2 + 𝐾𝐾3𝑍𝑍𝑒𝑒

−𝑍𝑍2
2 ] 

 

 

 𝜈𝜈𝑝𝑝 =
1
2𝜋𝜋√

𝜉𝜉4
𝜉𝜉2

 

 

 𝑇𝑇𝑐𝑐𝑎𝑎𝑐𝑐 =
1

𝑀𝑀+ ∫ 𝑝𝑝(𝑝𝑝𝑎𝑎)
𝑁𝑁(𝑝𝑝𝑎𝑎)

𝑑𝑑𝜎𝜎𝑎𝑎
∞
0

 

 

 𝑀𝑀+ = √𝜉𝜉4
𝜉𝜉2

 

 𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐 = 𝑒1 − 𝜎𝜎𝑚𝑚
𝑅𝑅𝑚𝑚
)
−𝑚𝑚

∙ 2
𝑚𝑚
𝐴𝐴 ∙(√𝜉𝜉0)

𝑚𝑚
∙𝐴𝐴

𝛤𝛤𝑒1−𝑚𝑚2 )
 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = [𝐾𝐾(𝑝𝑝𝑚𝑚𝑓 𝑃𝑃)]2𝐺𝐺𝑥𝑥(𝑓𝑓) 
 

 𝐾𝐾𝐺𝐺𝐺𝐺 =
1

1−𝑒𝑝𝑝𝑚𝑚𝑅𝑅𝑚𝑚)
2     𝑆𝑆𝐾𝐾 =

𝜉𝜉4
𝜉𝜉22
− 2   𝐶𝐶𝐹𝐹 =

|𝑆𝑆𝐾𝐾𝑝𝑝𝐾𝐾𝑎𝑎𝐾𝐾|
𝑆𝑆𝐾𝐾𝐾𝐾𝑚𝑚𝐾𝐾

 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = 𝐶𝐶𝐹𝐹 ⋅ 𝐺𝐺𝑥𝑥(𝑓𝑓) 

1 
 

 𝛹𝛹𝑥𝑥(𝑓𝑓𝑓 𝑓𝑓𝑓) = lim𝑇𝑇𝑇𝑇
1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡, 

 

 

 𝐺𝐺𝑥𝑥(𝑓𝑓) = lim𝑓𝑓𝑓𝑇0
𝛹𝛹𝑥𝑥(𝑓𝑓𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓 =𝛹𝛹𝑥𝑥 = lim𝑓𝑓𝑓𝑇0
1
𝑓𝑓𝑓 [lim𝑇𝑇𝑇𝑇

1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡𝑑 

 

 

 𝜉𝜉𝑘𝑘 = ∫ 𝐺𝐺𝑥𝑥(𝑓𝑓)
∞
0 𝑓𝑓𝑘𝑘𝑑𝑑𝑓𝑓 

 

 𝑝𝑝(𝑝𝑝𝑎𝑎) =
𝜎𝜎𝑎𝑎
𝜉𝜉0
𝑒𝑒𝑥𝑥𝑝𝑝 𝑒−𝜎𝜎𝑎𝑎

2

2𝜉𝜉0
) 

 

 

 𝑝𝑝(𝑝𝑝) = 1
2√𝜉𝜉0

[𝐾𝐾1𝐾𝐾4 𝑒𝑒
−𝑍𝑍
𝐾𝐾4 + 𝐾𝐾2𝑍𝑍

𝑅𝑅2 𝑒𝑒
−𝑍𝑍2
2𝑅𝑅2 + 𝐾𝐾3𝑍𝑍𝑒𝑒

−𝑍𝑍2
2 ] 

 

 

 𝜈𝜈𝑝𝑝 =
1
2𝜋𝜋√

𝜉𝜉4
𝜉𝜉2

 

 

 𝑇𝑇𝑐𝑐𝑎𝑎𝑐𝑐 =
1

𝑀𝑀+ ∫ 𝑝𝑝(𝑝𝑝𝑎𝑎)
𝑁𝑁(𝑝𝑝𝑎𝑎)

𝑑𝑑𝜎𝜎𝑎𝑎
∞
0

 

 

 𝑀𝑀+ = √𝜉𝜉4
𝜉𝜉2

 

 𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐 = 𝑒1 − 𝜎𝜎𝑚𝑚
𝑅𝑅𝑚𝑚
)
−𝑚𝑚

∙ 2
𝑚𝑚
𝐴𝐴 ∙(√𝜉𝜉0)

𝑚𝑚
∙𝐴𝐴

𝛤𝛤𝑒1−𝑚𝑚2 )
 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = [𝐾𝐾(𝑝𝑝𝑚𝑚𝑓 𝑃𝑃)]2𝐺𝐺𝑥𝑥(𝑓𝑓) 
 

 𝐾𝐾𝐺𝐺𝐺𝐺 =
1

1−𝑒𝑝𝑝𝑚𝑚𝑅𝑅𝑚𝑚)
2     𝑆𝑆𝐾𝐾 =

𝜉𝜉4
𝜉𝜉22
− 2   𝐶𝐶𝐹𝐹 =

|𝑆𝑆𝐾𝐾𝑝𝑝𝐾𝐾𝑎𝑎𝐾𝐾|
𝑆𝑆𝐾𝐾𝐾𝐾𝑚𝑚𝐾𝐾

 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = 𝐶𝐶𝐹𝐹 ⋅ 𝐺𝐺𝑥𝑥(𝑓𝑓) 

1 
 

 𝛹𝛹𝑥𝑥(𝑓𝑓𝑓 𝑓𝑓𝑓) = lim𝑇𝑇𝑇𝑇
1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡, 

 

 

 𝐺𝐺𝑥𝑥(𝑓𝑓) = lim𝑓𝑓𝑓𝑇0
𝛹𝛹𝑥𝑥(𝑓𝑓𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓 =𝛹𝛹𝑥𝑥 = lim𝑓𝑓𝑓𝑇0
1
𝑓𝑓𝑓 [lim𝑇𝑇𝑇𝑇

1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡𝑑 

 

 

 𝜉𝜉𝑘𝑘 = ∫ 𝐺𝐺𝑥𝑥(𝑓𝑓)
∞
0 𝑓𝑓𝑘𝑘𝑑𝑑𝑓𝑓 

 

 𝑝𝑝(𝑝𝑝𝑎𝑎) =
𝜎𝜎𝑎𝑎
𝜉𝜉0
𝑒𝑒𝑥𝑥𝑝𝑝 𝑒−𝜎𝜎𝑎𝑎

2

2𝜉𝜉0
) 

 

 

 𝑝𝑝(𝑝𝑝) = 1
2√𝜉𝜉0

[𝐾𝐾1𝐾𝐾4 𝑒𝑒
−𝑍𝑍
𝐾𝐾4 + 𝐾𝐾2𝑍𝑍

𝑅𝑅2 𝑒𝑒
−𝑍𝑍2
2𝑅𝑅2 + 𝐾𝐾3𝑍𝑍𝑒𝑒

−𝑍𝑍2
2 ] 

 

 

 𝜈𝜈𝑝𝑝 =
1
2𝜋𝜋√

𝜉𝜉4
𝜉𝜉2

 

 

 𝑇𝑇𝑐𝑐𝑎𝑎𝑐𝑐 =
1

𝑀𝑀+ ∫ 𝑝𝑝(𝑝𝑝𝑎𝑎)
𝑁𝑁(𝑝𝑝𝑎𝑎)

𝑑𝑑𝜎𝜎𝑎𝑎
∞
0

 

 

 𝑀𝑀+ = √𝜉𝜉4
𝜉𝜉2

 

 𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐 = 𝑒1 − 𝜎𝜎𝑚𝑚
𝑅𝑅𝑚𝑚
)
−𝑚𝑚

∙ 2
𝑚𝑚
𝐴𝐴 ∙(√𝜉𝜉0)

𝑚𝑚
∙𝐴𝐴

𝛤𝛤𝑒1−𝑚𝑚2 )
 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = [𝐾𝐾(𝑝𝑝𝑚𝑚𝑓 𝑃𝑃)]2𝐺𝐺𝑥𝑥(𝑓𝑓) 
 

 𝐾𝐾𝐺𝐺𝐺𝐺 =
1

1−𝑒𝑝𝑝𝑚𝑚𝑅𝑅𝑚𝑚)
2     𝑆𝑆𝐾𝐾 =

𝜉𝜉4
𝜉𝜉22
− 2   𝐶𝐶𝐹𝐹 =

|𝑆𝑆𝐾𝐾𝑝𝑝𝐾𝐾𝑎𝑎𝐾𝐾|
𝑆𝑆𝐾𝐾𝐾𝐾𝑚𝑚𝐾𝐾

 

 

 𝐺𝐺𝑥𝑥𝑇𝑇(𝑓𝑓) = 𝐶𝐶𝐹𝐹 ⋅ 𝐺𝐺𝑥𝑥(𝑓𝑓) 

1 
 

 𝛹𝛹𝑥𝑥(𝑓𝑓𝑓 𝑓𝑓𝑓) = lim𝑇𝑇𝑇𝑇
1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇

0 𝑑𝑑𝑡𝑡, 

 

 

 𝐺𝐺𝑥𝑥(𝑓𝑓) = lim𝑓𝑓𝑓𝑇0
𝛹𝛹𝑥𝑥(𝑓𝑓𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓 =𝛹𝛹𝑥𝑥 = lim𝑓𝑓𝑓𝑇0
1
𝑓𝑓𝑓 [lim𝑇𝑇𝑇𝑇

1
𝑇𝑇 ∫ 𝑥𝑥2(𝑡𝑡𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓)𝑇𝑇
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However, the aforesaid approach was also lim-
ited by the fact that it was not universal. The 
publication by M. Böhm [12] presents a uni-
versal algorithm enabling the determination 
of fatigue service life defined in the frequency 
domain. The algorithm is based on the trans-
formation of power spectral density through in-
formation concerning the mean values of stress:

where K can be determined using one of the 
classical models, e.g. by W. Z. Gerber, [13] or 
any appropriately defined model:

After the transformation of power spectral 
density (taking the mean value into considera-
tion), the entire principal procedure of the de-
termination of fatigue service life does not differ 
from that presented in this publication. Exper-
imental tests by D. P. Kihl were performed for 
several levels of values of stress ratio R=σmin/σmax. 
Figure 3 presents the comparison of fatigue ser-
vice life determined using the spectral meth-
od in relation to the approach adopted by D. P. 
Kihl as well as fatigue service life determined 
using the solution proposed by M. Böhm for 
R = 0.66 in relation to several classical models 
used to determine fatigue service life and based 
on publication [12].

Phenomena influencing the 
non-stationarity of the load 
affecting the welded joint 
In addition to internal stresses, an-
other important factor affecting the 
determination of fatigue service 
life is the maintaining of the sta-
tionarity of the load affecting the 
welded joint. The idealised load 
state can often lead to significant 
damage and accidents accompa-
nying the use of a welded structure. 
The assumption of stationarity dur-

ing operation as well as the distribution of am-
plitudes according to K. Gauss may result in 
ignoring certain phenomena, such as momen-
tary overloads, which could exceed the mate-
rial yield point. The presence of overload in a 
given structure affects the stationarity of the 
former, which should unequivocally exclude 
the application of the spectral method to de-
termine fatigue service life. In such a case, the 
aforesaid loads should be analysed as condi-
tionally non-stationary, with a separated part 
responsible for overload and power spectral 
density intensified using a coefficient taking 
this aspect into consideration. The first solution 

Fig. 2. Crosswise specimen used in fatigue tests performed by D. P. Kihl 
and involving the non-zero mean value of  stress
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Fig. 3. Comparison of results of experimental and com-
puted fatigue service life in relation to selected models 

(discussed in scientific reference publications) and stress 
ratio R = 0.66 [12]
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of this type was proposed by M. Böhm and M. 
Kowalski [4], taking into consideration the peak 
factor for the value of a spectral kurtosis deter-
mined from the so-called kurtogram (Fig. 4) :

The spectral kurtosis diagram is used to de-
termine peak factor CF, where the very idea of 
the peak factor can be illustrated as presented 
in Figure 5:

Afterwards, the intensification of power 
spectral density is performed using the follow-
ing formula:

The above-presented deviation from sta-
tionarity can be used for calculations applying 
the classical path used for the determination 
of fatigue service life by means of the spectral 
method.

Concluding remarks
Because of the complex nature of the fatigue 
process in relation to welded joints, all meth-
ods used to determine fatigue service life will 
be closer to reality if more factors affecting it 
are taken into consideration. The methods pre-
sented in the study do not take into consider-
ation structural properties such as the size of 
grains or various phases but are concerned with 
the use of mechanical properties of materials. 
As mentioned in the Introduction, the deter-
mination of fatigue service life based on the 
spectral method is significantly faster in com-
parison with methods defined in the time do-
main. In spite of the unquestionable advantages 
of the spectral methods it is necessary to know 
the limitations of the method along with cor-
rections which must be applied because of the 
effect of the mean value. In addition, it is also 

necessary to be familiar with the phenomena 
of overload and stationarity disturbances po-
tentially leading to the exceeding of the yield 
point of a given material. Because of the na-
ture of the research, the study presents issues 
connected with presently developed solutions 
aimed to minimise errors resulting from lack-
ing corrections. In spite of the fact that some 
works are at the simulation stage, they can be 
used by design engineers considering the ap-
plication of the spectral method to determine 
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normalised frequency and stationarity disturbed by the 

weld overload  

Fig. 5. Ideogram of the adjustment of the peak factor for 
the value of spectral kurtosis
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