CONTENTS

• Electron Beam Surface Hardening
 Piotr Śliwiński, Marek St. Węglowski, Krzysztof Kwieciński, Andrzej Wieczorek .. 7

• Detectability of Welding Imperfections in Non-Destructive PA and TOFD Ultrasonic Tests
 Borys Bednarek, Rafał Jurkiewicz, Agnieszka Rzeźnikiewicz ... 21

• Defectoscopic Tests of Railway Rails
 Łukasz Rawicki .. 33

• The Effect of the TIG Method-based Melting of Welds on the Properties and the Structure of Welded Joints Made of Austenitic Steel
 Cyprian Tyszko, Jacek Górka ... 43

• The Use of the Integral Method in the Determination of the Mayr-Voronin and Cassie-Voronin Simplified Mathematical Models of Electric Arc with the Changeable Length of the Plasma Column
 Antoni Sawicki .. 51

This work is licenced under

Creative Commons Attribution-NonCommercial 3.0 License
Summaries of the articles

Piotr Śliwiński, Marek St. Węglowski, Krzysztof Kwieciński, Andrzej Wieczorek – Electron Beam Surface Hardening
DOI: 10.17729/ebis.2022.1/1

The surface hardening of steel components makes it possible to achieve high abrasive wear resistance without the necessity of hardening the entire cross-section of a given element. As a result, it is possible to apply lower stress and reduce the cost of the process. Because of very high heating rates (of up to 10⁹ K/s) as well as the ease of dynamic deflection and focusing, the use of electron beam to harden component surfaces enables the obtaining of surface layers characterised by required properties. This article constitutes an overview of publications concerning electron beam-based surface hardening.

Borys Bednarek, Rafał Jurkiewicz, Agnieszka Rzeźnikiewicz – Detectability of Welding Imperfections in Non-Destructive PA and TOFD Ultrasonic Tests
DOI: 10.17729/ebis.2022.1/2

The primary objective of the article was to compare the PA and TOFD ultrasonic technique-based detectability of internal imperfections in welded joints. The scope of tests involved the making of joints as well as the performance of ultrasonic, radiographic and macroscopic metallographic tests. The tests enabled the comparison of indications obtained in the tests with the actual location and the size of imperfections. The test results were then compared to identify the accuracy of each technique in relation to previously assumed measurement requirements (e.g. the depth at which a given imperfection was located, characteristic dimensions, shift from the weld axis, etc.).

Łukasz Rawicki – Defectoscopic Tests of Railway Rails
DOI: 10.17729/ebis.2022.1/3

Non-destructive tests are of key importance as regards ensuring the safe operation of the railway track. Such tests enable the detection of discontinuities formed both during production and operation. However, due to their nature, non-destructive tests are characterised by certain limitations. The vast majority of non-destructive tests are indirect, where the presence of discontinuities is inferred on the basis of specific physical phenomena. Through the detection and assessment of the nature of discontinuities, non-destructive testing methods provide information about the properties of objects subjected to examination. The article presents some of the methods, (visual and ultrasonic tests) used in the examination of railway rails. The article also discusses unconventional testing methods, i.e. the method of scatter field flux and the measurement of the alternating current field.

Cyprian Tyszko, Jacek Górka – The Effect of the TIG Method-based Melting of Welds on the Properties and the Structure of Welded Joints Made of Austenitic Steel
DOI: 10.17729/ebis.2022.1/4

The article discusses the effect of TIG method-based melting on the properties and the structure of welded joints made of austenitic steel AISI 304. The tests involved the making of 2 mm thick joints and their subsequent melting in two different ways, i.e. with maintaining interpass temperature and immediately after welding. The study also included the performance of mechanical tests, macro and microscopic metallographic tests as well as
hardness and corrosion resistance tests. Results obtained in the tests justified the conclusion that the melting process and its conditions significantly affect the properties and the structure of welded joints.

Antoni Sawicki – The Use of the Integral Method in the Determination of the Mayr-Voronin and Cassie-Voronin Simplified Mathematical Models of Electric Arc with the Changeable Length of the Plasma Column

doi: 10.17729/ebis.2022.1/5

The article discusses the possibility of extending the usability of well-known integral method formulas used to determine the parameters of the Mayr and Cassie mathematical models of fixed-length arc. Simulation tests discussed in the article involved the simplified variants of the Mayr-Voronin and Cassie-Voronin models of electric arc with dissipated power proportional to the volume of the stretched column. Results obtained in the tests proved the usability of the above-named formulas when calculating the parameters of modified arc models within a wide range of elongation rate changes.
Bulletin of the Institute of Welding / Biuletyn Instytutu Spawalnictwa
ISSN 2300-1674

Publisher:
Łukasiewicz - Instytut Spawalnictwa

Editorial Board:
Editor-in-Chief: dr hab. inż. Mirosław Łomozik
Deputy Editor-in-Chief: dr hab. inż. Zygmunt Mikno
Editorial Secretary: mgr Marek Dragan

Honorary Founder Editor:
Prof. dr hab. inż. Jan Pilarczyk

Editorial Team:
Technical Editor: mgr Joanna Gubernat
Proofreader of Text in English: mgr Barbara Dobaj-Tumidajewicz
Proofreader of Scientific Text in Polish: mgr Justyna Szmyt
Translator: mgr Wojciech Cesarz

Section Editors (in alphabetical order):
Prof. Janusz Adamiec (Silesian University of Technology, Katowice, Poland) – New and advanced materials
Dr inż. Krzysztof Krasnowski – Destructive testing in welding engineering
Dr inż. Michał Kubica – Training and certification in welding engineering
Dr inż. Dawid Majewski – Brazing and soldering
Dr inż. Jolanta Matusiak – Ecology in welding engineering
Dr inż. Jerzy Niagaj – Welding consumables
Dr inż. Tomasz Pfeifer – Arc welding technologies
Dr inż. Adam Pietras – Resistance and friction welding processes
Dr inż. Janusz Pikula – FEM analysis in welding engineering
mgr inż. Adam Pilarczyk – IT systems for welding technologies
Prof. Jacek Słania – Non-destructive testing in welding engineering
Dr inż. Sebastian Stano – Robotics and laser welding processes
Dr hab. inż. M. Stępień, Prof. at Silesian University of Technology – Welding equipment and monitoring of welding processes
Dr inż. Aleksandra Węglowska – Adhesive bonding
Dr inż. Marek St. Węglowski – Electron beam welding technologies and surface engineering

International Scientific Committee (in alphabetical order):
Dr Fernando Mañas Arteche – General Manager of Asociación Española de Soldadura y Tecnologías de Unión (CESOL), Spain
Dr Peter Brziak – Director of the Research and Development at the Welding Research Institute, Bratislava, Slovakia
Dr Luca Costa – Instituto Italiano della Saldatura, Genova, Italy, Chief Executive Officer International Institute of Welding (IIW)
Prof. Dorin Dehelean – Executive Director of Romanian Welding Association, Timisoara, Romania
Prof. Stanisław Dymek – AGH University of Science and Technology Kraków, Poland
Dr hab. inż. Dariusz Fydrych, Prof. PG – Gdańsk University of Technology, Gdańsk, Poland
Dr hab. inż. Grzegorz Gołanński, Prof. PCz – Częstochowa University of Technology, Częstochowa, Poland
Dr hab. inż. Jacek Górka, Prof. Pol. Śl. – Silesian University of Technology, Gliwice, Poland
Prof. Carter Hamilton – Miami University, Oxford, USA
Prof. Andrzej Kolasa – Warsaw University of Technology
Prof. Slobodan Kralj – Faculty of Mechanical Engineering and Naval Architecture, Department of Welded Structures, University of Zagreb, Croatia
Prof. Igor Vitalievich Krivtsun – Director of the E. O. Paton Electric Welding Institute, Kiev, Ukraine, academician of the National Academy of Science of Ukraine
Prof. Jerzy Łabanowski – Gdańsk University of Technology, Poland
Prof. Leonid M. Łobanov – E. O. Paton Electric Welding Institute, Kiev, Ukraine, academician of the National Academy of Science of Ukraine
Dr Cécile Mayer – Institut de Soudure, Yutz, France
Dr hab. inż. Krzysztof Mróczka, Prof. UP – Pedagogical University of Kraków, Poland
Prof. Tomasz Węgrzyn – Silesian University of Technology, Poland
Prof. Adam Zieliński – Director of Łukasiewicz – Institute for Ferrous Metallurgy, Gliwice, Poland