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1. Introduction

Electric vibrations in nonlinear welding systems may result
from periodic excitations triggered by power sources. The
aforesaid states take place during AC welding performed
using welding transformers or electronic converters (e.g.
in TIG welding processes). The generation of vibrations
can also be favoured by various external factors affecting
the welding circuit, e.g. variable magnetic fields. There
are welding technologies using the periodically deflected
arc column in the variable magnetic field [1]. In cases in-
volving the welding of aluminium alloys performed using
consumable electrodes, the transverse magnetic field is
responsible for the widening of the bath and the reduc-
tion of its depth as well as for the reduction of porosity
and granularity of the metal. Periodic disturbance in the
plasma column length can also be induced by mechanical
factors, resulting in the transfer of small portions of elec-
trode metal onto the workpiece and the formation of thin
layers of the weld; such a solution is used in welding and
surfacing technologies [2]. Systems with such external dis-
turbances are classified as non-autonomous or parametric.
Non-linearity may result from the dynamic characteristics
of arc or those of the power supply system.

When analysing autonomous systems, the effects of ex-
ternal variable influences are usually ignored. In such cir-
cuits, oscillation can be triggered as a result of the negative
value of dynamic arc resistance or the positive feedback in
the system with arc. The transition from two-dimensional
systems to three-dimensional ones leads to significant qual-
itative changes in their behaviour. The primary property
of such systems is the possible appearance of determinis-
tic chaos. The transition from typical deterministic states
(equilibrium, periodic oscillation, nearly periodic oscilla-
tions) to chaos takes place through universal phenomena,
e.g. the doubling of the oscillation period. Because of the
nonlinearity of the circuit and the multidimensionality of
the state space, tests concerning the bifurcation of such
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systems (even in the simplest cases) are very complex.
Therefore, the simplest arc models are usually assumed in
them [3-5]. However, the above-presented assumptions do
notalways allow the modelling (with satisfactory accuracy)
of processes taking place in circuits with electric arc. In
some arc and plasma devices, the initiation and stabilisa-
tion of arc discharge require the application of appropriate
auxiliary systems ensuring the reduction of ignition volt-
age. As a result, both static and dynamic current-voltage
characteristics of arc undergo transformations [6, 7]. Such
changes can trigger various types of self-excited oscillation
in circuits with arcs. Taking into account ignition voltage
increases the complexity of a function approximating the
static model characteristic, which significantly complicates
the use of analytical methods in further research.

2. Autonomous RLC circuits with electric arc
and their mathematical models

Publication [3] presents eight simplest circuits containing
electric arc, linear elements R, L and C and the excitation
source characterised by constant voltage. Under appropriate
conditions, periodic or chaotic oscillation can be generated
in the aforesaid circuits. Selected diagrams of the circuits
are presented in Figure 1. The adopted initial state variables
were current iin inductor L, voltage u in capacitor C and state
current igin arc. Work [3] also presents four sets of systems
of non-dimensional differential equations. Such a reduction
of the number of equations by halfin relation to the number
of circuits resulted from the possibility of transformation
between pairs of corresponding systems of three differential
equations. To this end, it was necessary to use the replace-
ment of variable u < E - u. The non-dimensional form of
differential equations reduced the number of required pa-
rameters and made the equations more universal.
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Fig. 1. Electric circuits with arc [3] (A - system (electrode - arc -
welded material)

This article presents four mathematical models of circuits
with the generalised nonlinear static current-voltage char-
acteristic of arc U,.(i) :

« diagrams presented in Figures 1a and 1b correspond to
the system of three differential equations
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« diagrams presented in Figures 1c and 1d correspond to
the system of three differential equations
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« diagrams presented in Figures le and 1f correspond to
the system of three differential equations
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+ diagrams presented in Figures 1g and 1h correspond to
the system of three differential equations
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The non-dimensional parameters of equations are described
by the following formulas:
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whereas the non-dimensional parameters of time and state
variables are the following:
u i
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0

where 0 - time constant of the Pentegov model of arc.

The non-dimensional form of the static current-voltage is
expressed as follows:

f (Z) - Uarc(IO\/E)

Uz

Monograph [3] and publications [5, 8] assume a relatively
simple form of the static current-voltage characteristic
of the model, approximating experimental data with the
following power function:

(15)

n

Uarc(i) = UO(ILO) (16)

where n<0.

Publications [6, 7, and 9] describe a relatively simple form
of the static current-voltage characteristic of the model,
yet taking into consideration the finite value of arc ignition
voltage:

m
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M

17)

The coordinates of extreme point S(I, U) of characteristic
(17) are as follows:

Ul
(2I)"
which corresponds to arc ignition voltage. If the current

adopted in formula (17) is I; = 0 A, the following charac-
teristic is obtained:

I=1,, U= (18)

Uarc(i) = UO(%) (19)

The above-presented characteristic is identical (16) to the

assumption that m=-n.

Taking into account correlation (17) in equations (1)-(12) en-
ables the introduction of the following non-linear function:

m-1
Uarc(IO‘/E) = z?

= 20
f;rc(z) UO\/Z' (Z + PM)m ( )

where non-dimensional current is as follows:
Iy=1,/I, (21)

Materials Science and Welding Technologies 2024, 68 (1)



3. Selected criteria for assessing non-linear
system solutions

As mentioned above, the direct application of analytical
methods aimed at finding solutions of systems of differ-
ential equations with nonlinear characteristics (16) or (17)
and determining conditions necessary for the existence of
stable periodic oscillation is very difficult. The reasons for
such a situation include the relatively high dimension of the
state space of the system of equations and the strong non-
linearity of the arc model. Only in some cases of relatively
simple systems it is possible to determine the conditions
responsible for the generation of various oscillations using
the analytical method of Melnikov [10]. A relatively detailed
qualitative analysis of the systems of equations with char-
acteristic (16) is presented in publication [3].

The adoption of rational values of circuit parameters
can help obtain a non-rigid system of differential equa-
tions, and thus facilitate numerical integration processes.
However, even the partial investigation of these systems
in the areas of parameters of selected ranges entails very
laborious calculations and requires the development of
an extensive set of diagrams which are difficult to pres-
ent in an article of limited volume. Periodic and unsta-
ble non-periodic oscillations usually involve waveforms
in time, phase portraits and point-based modelling. The
availability of computer software makes it relatively easy
to determine functions of autocorrelation and the spectral
power density of mathematical model solutions.

One of the characteristics of dynamic chaos is the sen-
sitivity of its behaviour to assumed initial states. This
property reflects the exponential divergence of initially
almost infinitely close trajectories. Not all non-periodic
and non-harmonic oscillations constitute deterministic
chaos. For this reason, it was necessary to develop various
chaos criteria, some of which were classified as qualitative,
whereas some as quantitative [11, 12].

Numerical tests of systems generating chaotic oscillation
require verification using the following criteria:
a)process ergodicity,
b)exponential decrease of the autocorrelation function

to zero,

c) continuous spectrum of the power density function
with the initial pedestal,

d)positive values of the maximum characteristic Lyapu-
nov exponent.

The qualitative criteria include the extraordinary sensi-
tivity of solution behaviour to changes in initial conditions.
Qualitative tests of dynamic systems enable the building of
certain mathematical representations from phase portrait
images, on the basis of which it is possible to conclude
whether a given phase trajectory approaches the point of
equilibrium, limit cycle or a strange attractor.

The study involved one of the trajectories z = z(t) of a dy-
namic system with constant parameter values. On the
waveform in time, it was necessary to identify the max-
imum points of the above-named trajectory and create
Lorenz transformation, constituting the dependence of
the next maximum on the previous one:

Zn+1 :ﬂzn)

The shape of the above-named dependence might corre-
spond to a discrete representation known (e.g. from related
scientific publications literature) to have chaotic states. In
terms of a periodic waveform, it should be a single point.

(22)
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A more universal tool is Poincaré transformation. In the
three-dimensional phase space, it is necessary to select
atwo-dimensional plane, the arrangement of which affects
the form of transformation. The setting of the initial con-
dition (X, Yo, 20) is followed by the identification of a trajec-
tory intersecting the plane at the point having coordinates
()_Cn ,)_/n) . The aforesaid intersection takes place many
times. Finally, a set of points (X1, V,.1), (X,.5,V,.,),

...is obtained . The above-presented points create Poincaré

transformation. Chaos is created in the system if a compact
cloud is formed from the points of intersection of the tra-
jectory with the plane. However, if one or several points
are created, the nature of oscillation is periodic.

Autocorrelation is a measure concerning the relation-
ship between the current and past values of time series.
The aforesaid measure determines which past values of
series are the most useful for predicting future values. If
x(t) is the value of the trajectory of the dynamic system at
moment in time t and x(¢ + 1) is the value of moment ¢ + 1,
the form of the autocorrelation function is the following:

T
C(r) = lim [x(f)x(t + 7)dt (23)
0
Itiseven and has a maximum value in state t=0. Correlation
and autocorrelation functions are used to detect similar or
repeating (periodic) structures in signals. In cases of peri-
odic signals, itis a periodic function of the same period. One
of the properties of such a function is a rapid decrease in
value C(7) in the case of the presence of chaotic oscillation.

Knowing values x(%), it is possible to create signal power
distribution in relation to pulsation ®. To this end, it is
necessary to create an image by decomposing the signalin
relation to frequency using the Fourier transform:

T

x(@) = lim] x()erdt (24)

0
The spectrum of the power of signal P(w) = |x(w)P is the
distribution of its energy in relation to frequency. In cas-
es of chaotic signals, the so-called pedestal within the
low-frequency range is formed on the diagram of such
a function. In the aforesaid situation, local minima of
function P(w) do not have values close to zero. The func-
tion itself is continuous, with numerous and very close
extrema and decreasing within the high-frequency range.
In contrast to the above-named function, function P(w) of
the periodic signal consists of distinct and sharp peaks
of decreasing height, between which the values of the
function are close to zero. The foregoing also constitutes
a qualitative criterion.

On one hand, the system can show deterministic cha-
os, whereas on the other it may be dissipative along with
decreasing phase volume. Based on the foregoing, Smale
created a qualitative criterion in the form of a horseshoe,
whose presence indicates the existence of homoclinic orbits.

Quantitative criteria making it possible to verify the cre-
ation of chaos include Lyapunov exponents. The greatest
Lyapunov exponent characterises the degree of the expo-
nential divergence of close trajectories. If g, is the initial
distance between two points in the state space at moment
to, €(t) is the distance between the points after time At. The
greatest Lyapunov exponent can be determined using the
following formula [13]:

1 (1)

=1,
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The more precise determination of the exponent is ob-
tained using the following formula:

1)
A=lim Gin £(ty)

The greatest Lyapunov exponent characterises the de-
gree of the exponential divergence of initially close trajec-
tories. If the exponent is positive, the system is sensitive
to the disturbance of initial conditions and could be char-
acterised by chaotic behaviour.

A more precise behaviour of the system is represented by
the spectrum of Lyapunov exponents. In such a situation, the
rate of the divergence or convergence of trajectories along
various coordinate directions is taken into account. The sys-
tem of n-dimensional space has n Lyapunov exponents. If
asmall n-dimensional sphere of radius ¢ is assumed initially,
after time At it is possible to obtain an n-dimensional ellip-
soid with principal semi-axes designated as &, &,,.., €,. The
individual exponents are expressed by the following formula:

(26)
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Based on the spectrum of Lyapunov exponents it is pos-
sible to classify the attractors of the dynamic system. If
the autonomous system in the three-dimensional space
has exponents with the following signs [11]:

* <--,-> —isthe attractive point of equilibrium;
* <0,-,-> - is the limit cycle,

* <0,0,-> - is the two-dimensional torus,

* <+,0,-> - is the strange attractor.

The most problematic could be the identification of
Lyapunov exponents as it requires the analytical deter-
mination of the Jacobian matrix composed of derivatives
of functions being the right-hand sides of differential
equations. Using the analytical capabilities of the MATH-
EMATICA programme could significantly facilitate the
identification of the above-named exponents.

Quantitative criteria of deterministic chaos are related to
fractals [11] and include the fractal dimension and Alfréd
Rényi>s spectrum of generalised dimensions.

The use of only one (even very strong) criterion in order
to qualitatively determine the stability of mathematical
model solutions could be risky. For instance, the possibility
of precisely determining the signs of Lyapunov exponents
is affected by errors in the numerical integration method.
The foregoing is particularly important if exponent values
are close to zero. For this reason, some authors suggest the
use of artificial intelligence for this purpose [13].

4. Conclusions

1. The operation of auxiliary (ignition and stabilising) sys-
tems affects the value of electric arc ignition voltage,
which should be taken into account when modelling
and simulating the operating states of electrotechnical
equipment.

2.Taking into account the voltage of arc ignition increases
the complexity of mathematical models of circuits with
electric arc.

3.The operation of complex autonomous systems with
electric arc can entail the generation of various types of
nonlinear oscillations. For this reason, the identification
of the aforesaid oscillations requires the use of several
qualitative and quantitative criteria.
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