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Introduction
Most of today’s arc and plasma-arc weld-

ing devices are designed as universal tools 
used for joining and cutting elements of 
various geometrical dimensions (thick-
ness) and shapes made of various materials. 
Such processes require the use of diverse 
torches, electrodes, shielding gases, cur-
rent pulses of various amplitudes, shape, 
packing degree, polarity and frequency. In 
variable operating conditions, the systems 
of automatic control ensure stable electric 
arc burning, high quality of technological 
processes, high production efficiency, low 
material consumption as well as minimum 
noxiousness to personnel, the environment 
etc. However, such versatility results in the 
occurrence of a wide range of state varia-
bles, the appearance of various non-linear 
static and dynamic characteristics of supply 
systems and electric discharge.

Increasing advancements in comput-
er-aided methods for designing electrotech-
nological and electrothermal welding de-
vices require more and more accurate arc 
discharge models, precisely reproducing 
the non-linearity and dynamics of thermal 
and electric processes. However, the earlier 
imperfections of the experimental determi-
nation of the dynamic characteristics of arc 
discharges are accompanied by imperfec-
tions in their mathematical modelling [1]. 
Despite emerging compromises between 
the required accuracy of the reproduction 
of physical processes and the ease of meas-
urements, the simplicity of interpretation, 
the low complexity and short computational 
time, the most popular arc models still fail to 
ensure appropriate precision. This is large-
ly due to the wide range of exciting current 
changes and external effects causing chang-
es to column geometrical dimensions. 
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This study presents universal electric arc 
models with moderate cooling of the extend-
ed current range of approximations of stat-
ic and dynamic characteristics. The objec-
tive of this work required the application of 
modified mathematical models using static 
characteristics and hybrid models, match-
ing the Mayr and Cassie models. The use of 
the non-linear damping factor function cor-
responding to experimentation results was 
suggested [1] in the models.

In modelling electric arc dynamic char-
acteristics a damping function (or its spe-
cific value – time constant) along with other 
characteristics and dynamic parameters of a 
specific model constitute the whole complex 
of closely related quantities approximating 
the course of real physical processes with a 
pre-set accuracy. Due to random disorders, 
obtaining repeatable arc experimentation re-
sults with a pre-defined accuracy is very dif-
ficult. Even more problematic is matching 
several characteristics determined in various 
separately conducted experiments (e.g. static 
current-voltage characteristics, damping fac-
tor function) in a single model. This process 
cannot be carried out by means of simple an-
alytical or even numerical methods but re-
quires the use of complex procedures for the 
identification of electric arc mathematical 
model characteristics. 

Damping function in electric arc 
models with moderate cooling using 
static characteristics

One of the most commonly known general 
static characteristics of an electric arc with 
moderate cooling is the dependence provided 
by Nottingham:

where l – column length; I – direct current 
intensity; as – sum of near-cathode and near- 
-anode voltage drop; bs – gradient of deflected  

arc voltage, which in the case of arc burn-
ing coaxially with electrodes corresponds 
to electric field intensity Estat. The shapes of 
typical static characteristics of electric field 
voltage and intensity are presented in Figure 
1. In the case of strong currents it is possible 
to assume that static voltage Ustat does not 
depend on current. 

Ustat(l) = as + bsl (2)

According to formula (1), the generalised 
power static characteristic is described by 
the formula 

Pstat=Ustat(l, I)·I=
= (as +bsl)·I+(cs+ dsl)·Ii-n

which in accordance with formula (2) in the 
case of string currents adopts a simpler form: 

Pstat=Ustat(l)·I=(as+bsl)·I (4)

If and arc length does not change (l = const), 
the static voltage-current characteristics is 
the following:

Ustat(I)=A+BI-n (5)

where A=as+bsl = const; B = cs+dsl = const. 
Similarly, the power of an arc is a non-linear 
current function:

Pstat(I)=Ustat·I=f(I)=AI+BI1-n (6)

and in the case of strong currents the depend-
ence becomes linear 

Pstat=Ustat·I=I·const (7)

A modified arc model by Mayr [2, 3] can 
be presented in a general conductance form

where g – column conductance; i – alternat-
ing current intensity; Pkol – electric power 
supplied to plasma column; Pdys – power of 
energy dissipated from column; θM(i) – 
damping function corresponding to the time 
of relaxation of heat processes. Electric 
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power supplied to thermal plasma is ex-
pressed by the formula below:

where ukol – voltage drop on arc column. In 
the classical Mayr model it is assumed that 
Pdys(t) = const. In the range of stronger cur-
rents this condition cannot be met any longer 
and usually the Cassie model is used instead 
[3]. As heat dissipation processes react slow-
ly to external disturbances, one can rough-
ly assume that a power loss is principally 
determined by static characteristics [4], 
Pdys(t) ≈ P’stat(i(t)), i.e.

where P’stat – takes into consideration pow-
er losses only in column plasma, without 
near-electrode areas. The function of loss 
power can be approximated by means of de-
pendences (6) or (7) allowing a generalised 
dynamic arc model to be obtained:

where A’ = bsl = const. The power of losses 
in disequilibrium plasma PE = as |i| of very 
thin near-electrode areas is taken into con-
sideration separately. More often applied are 
static voltage-current characteristics (1), (2) 
or (5), and then

After substituting formula (12) to formula 
(10) it is possible to obtain the modified Mayr 
equations in the conductance form 

The shapes of the typical static character-
istics of power and column conductance are 
presented in Figure 2.

At this moment, when conductance does 
not change in time, the static characteristics of 
an arc in this model has the following form:

Thus, based on this it is possible to write 
model (13) in a conductance form 
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Fig. 2. Arc static characteristics: 
Pstat(I) - power-current, Gstat(I) - conductance-current
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Fig. 1. Static characteristics of arc: 
Ustat(I) - voltage-current, Estat(I) – electric field intensity
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which on the basis of formulas (5) and (10) 
leads to the generalised dependence 

In comparison with the classical Mayr mod-
el [2], models (11) and (17) can significant-
ly more accurately reproduce the static and 
dynamic characteristics of an arc in a wid-
er range of current changes. This results not 
only from the variation of a time constant 
obtaining the form of the damping function 
θM(i), but also from applying a more accu-
rate function approximating static voltage- 
-current or power-current characteristics. 

Damping function in arc TWV 
hybrid model matching Mayr 
and Cassie models

In the TWV hybrid model of an arc [5] the 
fractions of currents flowing through two 
parallel non-linear conductances, corre-
sponding to the Mayr and Cassie models, 
depend on their resultant value. Thus, it is 
possible to write 

where I0 – limiting current between the Mayr 
and Cassie models. Hence we obtain

The model selections conditions are the 
following: 
• Mayr model 

• Cassie model

where PM – constant power of the Mayr 
model; θM – time constant of the Mayr model 
(0<θC<<θM); UC – constant voltage of the 
Cassie model; θC – time constant of the Cas-
sie model (0<θC<<10-3 s). 

Figure 3 presents the shapes of the typical 
static characteristics of voltage and power. 
Adopted approximations in the form of the 
constant values of Cassie model voltage and 
Mayr model power are marked against their 
background of the aforesaid static character-
istics. Both models also assume the constant 
values of a damping factor, which is present-
ed in Figure 4 against the background of typ-
ical characteristics θ(i).

On the basis of formulas (18)-(21) a hy-
brid model is created [5] 

where θMC(i) – damping factor function of 
TWV model. 

In practical considerations it is usually as-
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Fig. 3. Static characteristics and dynamic parameters 
of arc: Ustat(I) - voltage-current, Pstat(I) – power-current, 

PM(I)=const – Mayr model power, 
UC(I) = const – Cassie model voltage, 

I0 – limiting current between the Mayr and Cassie models
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sumed that Gmin = 0 [5, 6]. Then, formula 
(22) can be written in a simplified form

where the designation of a tapering function 
was introduced

The form of this function may vary and 
depends on the type of an electrotechnologi-
cal device and its operating conditions [7].

Damping function in variable length 
arc hybrid model matching Berger 
and Kulakov models

While considering the models of an elec-
tric arc with the variable length of a plasma 
column it is possible to modify separate Cas-
sie and Mayr models retaining the constant 
value of damping factors (time constants) 
and current ranges preferred by them.

An increase in the geometrical dimensions 
of the plasma column of a high-current arc is 
accompanied by an increase in energy neces-
sary for the generation of additional plasma 
volume. The assumed axial-cylindrical shape 
of a column and its tension by a length dl 

corresponds to an increase in thermal power 

where ql – arc energy linear density. There-
fore, in simplifying conditions [8] thermal 
power required for the generation of addi-
tional plasma volume is roughly proportional 
to the rate of a length increase. This is ac-
companied by some relaxation times result-
ing from gas thermal inertia and additional 
cooling of a column. As the arc voltage grows 
along with an increase in a column length, in 
publication [8] the following approach to de-
termining Cassie model voltage component 
was suggested (21):

u2
c  (l) = al (26)

where the parameter a is almost constant in 
the wide range of current i changes. In turn, 
additional power pv(dl/dt) dissipated from 
the column is determined by u2

c  g; due to dis-
sipativity, the lack of even partial conserva-
tivity and the return of energy to the circuit 
leads to the following dependence [8]:

A modified Cassie equation with the 

variable value of voltage  
 enables obtaining the conductance form of 
the Berger model [8]

where pv(dl/dt) - power needed for the gen-
eration of additional plasma volume; θCB – 
time constant of Cassie-Berger model. 
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Fig. 4. Characteristics and dynamic parameters of arc: 
θ(i) – characteristics of damping factor, 

θM –Mayr model time constant, 
θC –Cassie model time constant
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Kulakov suggested the modification of a 
low-current arc model (16) taking into con-
sideration column length changes. The 
first-degree Mayr-Kulakov model in the con-
ductance form is the following [9]:

where Estat(i) – non-linear static characteris-
tics of electric field intensity; θMK – time con-
stant of the Mayr-Kulakov model. One of the 
imperfections of approximation by means of 
this model is overlooking the impact of plas-
ma physical properties on conductance dy-
namics during column length changes. 

Using the dependence approximating the 
static voltage-current characteristics (1) it is 
possible to determine the static characteris-
tics of electric field intensity

Then, the Kulakov model has the following form:

The arc column hybrid model, taking into 
consideration the changes of an arc length, 
matches models (28) and (29) in the manner 
(23) by means of an appropriate tapering 
function ε(i). Therefore the model has the 
following form:

where θBK(i) – damping factor function of 
the hybrid Berger-Kulakov model. 

If a relatively low rate of arc length chang-
es is assumed (dl/dt≈0), equation (32) can be 
written as

After taking into consideration approxima-
tions (26) and (30) the equation is as follows:

The matching of the Berger and Kulakov 
models as well as using the non-linear func-
tion of a damping factor makes it possible to 
use the hybrid model for simulating process-
es in electrotechnological devices operating 
with a wide range of current and an arc dis-
charge column length.

Damping function in Voronin model 
of arc with variable geometrical 
dimensions 

The Voronin model makes it possible to 
take into consideration an external influence 
exerted on the length and diameter of a cy-
lindrical column. In order to create such a 
model it is necessary to make a number of 
simplifying assumptions [9, 10]. The model 
basis is a simplified equation of the thermal 
balance of a column. It is assumed that the 
dissipated power is proportional to the side 
area of an arc:

As a result, an arc model with variable geomet-
rical dimensions S(t) and l(t) of the following 
general conductance form is obtained [10]:
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where a damping factor function is 

and Q0 – reference factor, J/m3; Kg – coeffi-
cient of unitary conductance approximation, 
S/m; l – length of arc column, m; pS – density 
of power dissipated by the side surface of a 
column, W/m2; S – area of arc cross section, 
m2. All three parameters Q0, Kg, pS are deter-
mined on the basis of experiments and are 
assumed to be constant quantities. 

If the relative rate of arc length changes is 
low (dl/dt≈0), equation (36) can be written as 

Models (36) and (38), similarly as the Mayr 
model, reproduce arc characteristics in the 
low-current range relatively well. Therefore 
they can be used to calculate processes in 
devices with a relatively low temperature of 
the area surrounding a discharge. Such con-
ditions occur in open arc welding or during 
melting of a charge at the initial stages of arc 
furnace operation. While considering a free 
or quasi-free arc, in which the area of col-
umn cross section is primarily determined by 
the module of current value, using equation 
(36) one obtains

Adopted assumptions simplifying model (36) 
lead to almost a linear dependence of a damp-
ing function (37) on an arc column diameter 

( )( ) ( ) ( )idiSiS ∝∝θ  . In turn, in theoretical 
deliberations [11] the relation ( )( ) ( )iSiS ∝θ  
is assumed. However, experimental tests [5, 11] 
reveal almost a reverse tendency ( ) 1−∝ iiθ  , 
which should be recognised as a real one, 
especially due to the fact that simplified cy-
lindrical arc models take into consideration 
only selected dominant heat processes, and 
entirely pass over gasodynamic and electro-
magnetic processes (e.g. effects of contrac-
tion and gas pumping by a column). 

Figure 5 presents a typical shape of char-
acteristics d(i) and S(i). One can see that 
there is no correlation of these quantities 
with a damping factor function. To some ex-
tent an increase in θ in areas where current 
passes through zero can be explained by the 
significant weakening of a contraction effect 
and momentary plasma expansion. 

Damping function in Voronin 
modified arc model using static 
characteristics 

While considering the case of a free or 
quasi-free welding arc, on the basis of ex-
perimentation and theoretical analysis [12] 
on can adopt a dependence related to an arc 
column diameter

d=k|i|m (40)
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Fig. 5. Arc static and dynamic characteristics of: 
θ(I) – damping factor, d(I) – column diameter, 

S(I) – area of column cross section
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As heat dissipation processes react slowly to 
external disturbances, just as previously it is 
possible to roughly assume that 
Pdys(t) ≈ P’stat(i(t)), which on the basis of for-
mula (35) leads to the following dependence:

Thus, the intensity of a field is expressed by 
the following formula:

Estat(i) = πpsk|i|m-1 sign(i) = (bs+ds|i|-n)·sign(i) 
 (42)

Hence, on the basis of formula (36) the fol-
lowing dependence is obtained:

If compared with the Kulakov model (29) 
this model significantly extends the possi-
bility of approximating characteristics as it 
takes into consideration not only the dynam-
ics of length changes but also the dynamics 
of column cross section changes. 

Slow arc length changes (dl/dt ≈ 0) corre-
spond to the following equation:

If in formula (40) a typical value m= ⅔ 
[12] is assumed, using formula (42) the 
dependence ( ) 3/1−∝ iiEstat  is obtained. This 
dependence corresponds to applied ap-
proximations of electric field intensity in a 
low-current arc with moderate cooling of a 
column [4]. In addition, formula (42) can 
be used to determine the basic model pa-

rameter, i.e. the surface density of thermally 
dissipated power:

Concluding remarks
1. Introducing a damping function non-lin-

early dependent on current extends the possi-
bilities of applying dynamic arc mathematical 
models using static characteristics. 

2. Introducing a damping function non- 
-linearly dependent on current strengthens 
the versatility of arc hybrid models using 
sub-models of a low and high-current arc. 

3. The developed mathematical models 
include a wide range of changes of current 
and those of plasma column geometrical di-
mensions. As a result, they can be used to 
simulate processes in various arc electrotech-
nological and plasma devices (both weld-
ing and electrothermal ones) with moderate 
cooling of a discharge area. 

Research work financed from funds 
for science in the years 2010-2013 as 
research project no. N N511 305038.
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