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Introduction
The multiplicity, complexity, and proble-

matic measurability of the characteristics of 
processes in arc discharges entails the neces-
sity of applying various methods of mathe-
matical description and quantitative analy-
ses. Numerous physical processes including 
electromagnetic, thermal, gasodynamic, and 
acoustic as well as the mechanical processes 
take place in the plasma and electrodes. The 
complexity of such processes results from si-
gnificant nonlinearities of static and dynamic 
characteristics, collectiveness, and interac-
tion of plasma components as well as from 
the very short relaxation times of the elemen-
tary processes. Difficulties in measurability 
are caused by high temperatures, strong heat 
(and light) emission, significant gas flow ra-
tes, high quantity gradients in state variables, 
very high chemical reaction rates, occasional 
difficulties in  accessing sensors (including 
optical ones) to a discharge area because of its 
small size or the fact of being closed. Due to 
this and depending on the needs in designing 
the power-supply and control systems of ele-
crotechnological devices, one adopts various 
simplifying assumptions leading to various 
degrees of approximation of physicochemical 
phenomena using mathematical models. The 
simplest and most commonly applied models 
include those of Cassie-Berger and Mayr-Ku-
lakov. However, approximations obtained 
using these models are often considered to be 
very rough in relation to needs connected with 

designing and building various measuring, 
supply, and control systems; this being caused 
by a necessity to apply various electric exci-
tations and various conditions of arc burning 
in devices. For this reason, various modifica-
tions of equations and new mathematical mo-
dels of arcs have been proposed. 

Most of the existing arc models (i.e. also 
those by Cassie-Berger and Mayr-Kulakov) 
take into consideration only one manner of 
heat transfer, either conduction or convec-
tion, regarding each of them as dominant in 
a variety of technological conditions. The 
Cassie-Berger model provides more satisfac-
tory results in cases when strong currents are 
required, whereas the Mayr-Kulakov model is 
preferred when weak currents are preferred. 
Such an approach to modelling is justified by 
an experimentally confirmed assumption, ac-
cording to which there is a boundary between 
a column of thermal plasma and a turbulent 
gas flow around it [1].

The extension of the applicability area of 
widely known simplified Cassie-Berger and 
Mayr-Kulakov models required the develop-
ment of several associations. One of them is 
the series connection of two resistances corre-
sponding to the nonlinear Cassie-Berger and 
Mayr-Kulakov models suggested by Habe-
dank. This combined model, however, lacks 
appropriate physical interpretation of pheno-
mena present in the column. A more rational 
solution to the issue of generalisation of de-
scription of processes taking place in the arc 
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in a wide range of currents was proposed in 
publication [2], in the form of a parallel con-
nection of conductances corresponding to the 
nonlinear Cassie-Berger and Mayr-Kulakov 
models, whose participation is determined by 
appropriate tapering functions of current.

The basic methods of controlling welding 
and electrothermal (arc and plasma-arc) devi-
ces include modifications of excitation source 
current as well as modifications of arc (length) 
voltage. Most of the simple and hybrid dy-
namic models applied so far, however, treat 
the arc as an element of the constant length 
of a plasma column. Moreover, there are even 
some cases when taking into consideration the 
modifications of the arc length only in rela-
tion to a single model (e.g. Cassie-Berger or 
Mayr-Kulakov) does not ensure that the ap-
proximation of power characteristics within a 
wide range of work current amplitudes can be 
obtained.

Cassie-Berger and Mayr-Kulakov mo-
dels of arc with constant plasma co-
lumn length

Dynamic models of an electric arc column 
are created on the basis of the power balance 
equation

  (1)

where Pkol –  power supplied to the column, 
Pdys – thermal power dissipated from the co-
lumn,  Q –thermal plasma enthalpy,  ukol, i – 
voltage and current of the arc column. The 
effect of strong nonlinearity of the models 
results from column conductance variabili-
ty, which is a composite function in the form 
of g(t) = Fg(Q(t)). 

Popular electric arc models by Cassie-Ber-
ger and Mayr-Kulakov take advantage of two 

different simplifying assumptions [3]: 
• Mayr-Kulakov model: T(t,(x,y,z)) = va-

riab., arc power dissipated through conduction

• Cassie-Berger model: T(t,(x,y,z))= 
const., arc power dissipated through convec-
tion,

where T – temperature, K; x,y,z – system co-
ordinates, m; S – cross-section area, m2,  σ- pla-
sma conductivity, S/m; PS – dissipated power, 
W;  QV – plasma enthalpy volumetric density, 
J/m3; Q0 – constant reference coefficient, J/m3;  
K1 – constant coefficient of approximation 
with exponential function, S/m; K2 – approxi-
mation coefficient, S. As the Mayr-Kulakov 
model makes it possible to obtain the best ap-
proximation in cases when weak currents are 
required and the Cassie-Berger model in the 
case of strong currents, it is the latter model 
that is of basic importance in simulating elec-
tromagnetic processes in industrial welding 
and electrothermal devices. Transitory proces-
ses in the areas of the transition of current thro-
ugh zero values are significant for ensuring the 
stability of arc burning and appropriate start 
and stop characteristics. In addition, the pro-
cesses are decisive for the proper operation of 
commutation devices.

After adopting appropriate simplifying 
assumptions and transformations [3] from for-
mula (1), one obtains the already known Cas-
sie-Berger models 

- in the conductance form

  (2)
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- in the resistance form

  (3)

where ϴC – time constant of the model, UC – 
model voltage, g = 1/r – conductance and re-
sistance of the arc column. 

Similarly, on the basis of the power balan-
ce equation (1) and after adopting appropriate 
simplifying assumptions and transformations 
[3], one can obtain the Mayr-Kulakov models 
in the conductance form

 (4)

or in the resistance form

 (5)

where ϴM – time constant of the model, PM – 
power of Mayr-Kulakov model. 

The Mayr-Kulakov arc model can be trans-
formed into another, general conductance form

 (6)

or the resistance form 

 (7)

where ϴMs – corresponds to relaxation time of 
thermal process, and the supplied electric po-
wer amounts to 

 (8)

As the processes of heat dissipation slowly 
respond to external disturbance, one can assu-
me that the power of losses is basically deter-
mined by static characteristics [4] i.e. 

 (9)

where Ustat(i) – static voltage-current characte-
ristics, Gstat(i) – static nonlinear conductance, 
Rstat(i) – static nonlinear resistance.

After substituting (8) and (9) to (6) and (7) 
one obtains a generalised Mayr-Kulakov equ-
ation in the conductance form

 (10)

or in the resistance form

 (11)

When conductance does not change in time, 
the static characteristics of the arc in this mo-
del are as follows:

 (12)

 (13)

Therefore, on the basis of these formulas  
one can write models (6) and (7) in the con-
ductance form 

 (14)

or in the resistance form 

 (15)

Ustat(i) = - Ustat(-i). 
The application of the appropriate approxi-

mation of static characteristic Ustat(i) offers more 
precise determination of arc dynamic characteri-
stics if compared with hyperbolic static charac-
teristic, pre-set only by one constant Mayr-Ku-
lakov power value. Such an approach extends 
somewhat the range of the model applicability to 
include stronger currents, when a characteristic 
is no longer drooping [5] but becomes flat and, in 
the case of stronger currents, is even rising.
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Combined models of arc with constant 
column length

The series connection of the Cassie-Berger 
and Mayr-Kulakov models makes it possible 
to obtain the Habedank model, where substitu-
te conductance fulfils the dependence 

 (16)

and resistance is

r = rM+rC  (17)

As the same current flows through both ele-
ments and after taking into consideration that 
gC = i / uC, gM = i / uM and g = i / u it can be 
stated that

 (18)

and

 (19)

Then on the basis of (18) and (19), one can 
express the Habedank model in the conductan-
ce form:

 (20)

 (21)

The resistance form of the formulas is as follows:

 (22)

 (23)

If one now implements the simplified May-
r-Kulakov model taking into consideration the 
virtual static characteristics of the arc compo-
nent UMstat(i), instead of (21) one receives 

 (24)

and after reduction 

  (25)

Similarly, instead of (23) the resistance 
form of the model will be 

 (26)

and after reduction

 (27)

where

UMstat(i) = Ustat(i) - U0 sign(i), UC = f(U0).

The voltage of U0 corresponds to ranges of 
strong arc currents.

The Habedank model (20)-(23) is someti-
mes used to simulate commutation processes 
in electric circuits with high voltage electrical 
devices; its expansion being the series con-
nection of as many as three models (1 – Cas-
sie-Berger, 2 – Mayr-Kulakov) [7]. Known as 
KEMA, the model was even implemented as a 
blackbox in simulation programmes [8, 9].

In the TWV hybrid arc model [2], the va-
lues of currents flowing through two parallel 
nonlinear conductances, corresponding to the 
Mayr-Kulakov and Cassie-Berger models, de-
pend on their resultant value and therefore can 
be presented as follows:

 (28)
Hence one receives
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The conditions of the selection of models are 
as follows:

- Mayr-Kulakov model

 (30)

- Cassie-Berger model

 (31)

In welding [10, 11] and furnace [2] arcs, the 
value of limiting current I0 is approximately 5 
A. In the case of the application of the TWV 
model for the approximation of the characteri-
stics of high-pressure arc lamps, the value of 
I0 is almost 10 times lower [12].

The hybrid model of the arc column in the 
conductance form is [2]

(32)
where Gmin – constant conductance dependent 
on the distance between electrodes, their shape 
and arrangement as well as on the gas and the 
temperature of the environment in currentless 
moments; I0 - transition current between the 
Cassie-Berger and Mayr-Kulakov models. In 
a general case, the suppression function ϴ de-
pends on current i

 (33)

If the current is relatively low, one can assu-
me that ϴ≈ϴ1 , and when current is high one 
can assume that ϴ≈ϴ0. If ϴ→0, the static cha-
racteristic results from adopted assumptions 
related to the participation of individual con-
stituent models: 

• if │i│ < I0 and dg/dt = 0, then u = PM/i;
• if │i│ > I0 and dg/dt = 0, then u = UC sign(i).

In practical considerations [2] one usually 
assumes that ϴ (|i|) = const and Gmin = 0. Then, 
formula (32) can be simplified to

 (34)

with the designation

 (35)

The creation of the resistance form of the 
hybrid model, analogous to the conductance 
TWV, is difficult for computer recording and 
implementation. For this reason, the resistance 
form is not subject to consideration.

The TWV model is successfully used in si-
mulations of stationary processes in welding 
and electrothermal devices as well as in sys-
tems with discharge light sources [2, 10-12].

If here, like previously, one introduces the 
Mayr-Kulakov model, taking into considera-
tion the virtual static characteristic of the arc 
component Ustat(iM), instead of (34) one re-
ceives

 (36)

At time intervals when current |i| values are 
low, the Mayr-Kulakov conductance constitu-
ent plays an important role and the dependence 
iM≈i takes place. Thus, one can approximately 
write that Ustat(iM) = Ustat(i) and then

 (37)

Representation of the disturbance of 
arc column length with modified Cas-
sie-Berger and Mayr-Kulakov

An increase in the geometric size of the pla-
sma arc column is accompanied by an increase 
in energy necessary to generate an additional 
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volume of plasma. The adopted assumption of 
the axial-cylindrical shape of the column and 
its stretching by length dl corresponds to an 
increase in thermal power

 (38)

where ql – arc energy linear density. Hence 
in simplifying conditions, the thermal power 
necessary to generate the additional volume 
of plasma is approximately proportional to the 
length  of the increment rate. The phenomenon 
is accompanied by relaxation times resulting 
from gas thermal inertia and additional cooling 
of the column. Modified equations (2) and (3), 
with a variable value of the Cassie-Berger

voltage, give the conductance

form [13, 14]

 (39)

The resistance form is

 (40)

where pv(dl/dt) - power necessary to generate 
additional volume of plasma. 

Kulakov proposed a modification of model 
(14) taking into consideration the modification 
of the column length. Model I of the order in 
the conductance form is [15]

 (41)

where Estat(i) – static characteristic of elec-
tric field intensity. The resistance form of the 
model is described by the following formula: 

 (42)

Representation of disturbance of arc 
column length in modified Habedank 
and TWV hybrid models

The series connection of nonlinear conduc-
tances (16) corresponding to the Cassie-Ber-
ger and Mayr-Kulakov models makes it pos-
sible to obtain the modified Habedank model. 
The conductance form is expressed by the fol-
lowing formulas:

 (43)
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If one takes into consideration the series 
connection of resistances (17), the form of the 
model will be 
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where EMstat(i) – virtual characteristic of 
electric field intensity. 

The hybrid model of the arc column, taking 
into consideration its length changes, associa-
tes, by means of an appropriate tapering func-
tion Ɛ(i),  models (39) and (41) in the manner 
(34). Thus, its form is as follows:
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 Similarly as previously (37), one can write the 
approximate equation

 (48)

For simulations of processes in the circuits 
of electro-technological devices in which the 
electrode travel rate is relatively low (dl/dt≈0), 
formulas for the modified Habedank model are 
reduced to the conductance form

 (49)

 (50)

Similarly, the simplified resistance form of 
this model is as follows:

 (51)

  (52)

The simplified hybrid model of the arc co-
lumn taking into consideration relatively slow 
changes of the length of the arc, takes the fol-
lowing form:

 (53)

Obtained dependences (43)-(53) are relati-
vely simple mathematical models approxima-
ting very complex physical processes taking 
place in high-pressure electric arcs supplied 
with direct or alternating current and disturbed 
by factors affecting the length of the plasma 
arc column.

The macro-models of arcs and simulations 
of courses in circuits implemented in the pro-
gramme MATLAB-Simulink can be a subject 
of a separate article.

Conclusions
1. The combined Habedank and TWV mo-

dels extend the possibilities of simulating pro-
cesses in electric arcs of electro-technological 
and electrical power engineering devices, yet 
only in cases in which the length of the plasma 
arc column is constant.

2. The Cassie-Berger model extends the 
possibilities of simulating processes in varia-
ble length electric arcs of electro-technologi-
cal and electrical power engineering devices, 
but only in case of those with relatively high 
intensity of the plasma arc current.

3. The Mayr-Kulakov model extends the 
possibilities of simulating processes in varia-
ble length electric arcs of electro-technologi-
cal and electrical power engineering devices, 
yet only in case of those with relatively low 
intensity of the plasma arc current.

4. The modified Habedank and TWV hy-
brid models extend the possibilities of simula-
ting processes in electric arcs of electro-tech-
nological and electrical power engineering 
devices in which the length of the plasma arc 
column is changeable and the range of variabi-
lity of electric current intensity is wide. 

5. The combined series Habedank model 
of the electric arc, usually preferred in simu-
lating processes in high-voltage devices, can 
after the implementation of necessary modifi-
cation take into account the variable length of 
the plasma arc column.

6. The combined parallel TWV model of 
the electric arc, usually preferred in simulating 
processes in low-voltage devices, can after the 
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implementation of necessary modification take 
into account the variable length of the plasma 
arc column.
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