Dye Penetrant Testing of Welded Joints Made of Nickel and its Alloys

Abstract: The article presents tests involving natural cracks, including measurements of the width of cracks and the profile of their surface roughness. The investigation also involved tests performed in order to observe how a given factor affects development times in penetrant tests as well as to determine what time of development is recommended for nickel and its alloys in order to detect unacceptable welding imperfections (cracks). The article also discusses the effect of penetration times on the duration of development times and sizes of indications in penetrant tests.

Keywords: non-destructive testing, dye penetrant testing, nickel alloys

DOI: <u>10.17729/ebis.2016.4/7</u>

Introduction

Welding processes can be accompanied by the formation of welding imperfections compromising the strength of welded joints. The most important imperfections in terms of welded structures are cracks. Surface cracks can be detected using various non-destructive testing

methods. One of the most popular NDT methods is penetrant testing. During penetrant tests, a penetrant, supported by a developer, "leaves" a discontinuity to reach the surface subjected to the test. As a result, a dye or fluorescent technique-based indication is obtained (Fig. 1). The time after which a penetrant reaches the surface,

Fig. 1. Indications obtained during penetrant tests: a) using the dye penetrant method (observation of the surface in natural light), b) using the fluorescent method (observation of the surface in UV-A radiation)

dr inż. Paweł Irek (PhD (DSc) Eng.), mgr inż. Łukasz Rawicki (MSc Eng.), dr inż. Karol Kaczmarek (PhD (DSc) Eng.), – Instytut Spawalnictwa, Welding Education and Supervision Centre

Fig. 2. Butt joints made of Nickel 200. Roman numerals represent numbers of successive joints

Fig. 3. Exemplary cracks in the butt joints made of nickel (magnified 4x). Roman numerals represent numbers of successive joints; Arabic numerals represent number of successive cracks in a given joint

referred to as the time of development, may vary from several minutes to even 24 hours. The objective of the investigation was to determine how the width of a crack and the roughness of its surface affect the time of development in welded joints made of nickel and its alloys and what time of development should be used in relation to these materials. In order to obtain more accurate results, the tests described in the article were performed using natural cracks [1-3].

Test Specimens

The tests involved the use of Nickel 200. The determination of crack widths involved making 6 butt joints $(140 \times 240 \times 6 \text{ mm})$ (Fig. 2). The melting of plates nos. 5 and 6 was not followed by the formation of cracks. In order to solve this problem and create cracks, plates nos. 5 and 6 were cut at the area of melting and welded. The butt joints were welded using the TIG method without a filler metal. The test joints were provided with numerals.

Tests

Before the tests and measurements, the specimens were thoroughly cleaned, i.e. post-processing remains were removed and the surface to be tested was degreased in an ultrasonic washer using extraction naphtha and cleaning solvent. After washing, the specimens were dried at a temperature of approximately 20°C, using a stream of compressed air. As expected, the butt joints developed cracks (see Fig. 3 and 4).

Macroscopic photographs of the cracks were made using an Olympus szx9 stereoscopic microscope at 4x and 28.5x magnification. The widths of the cracks were measured using the Auto CAD 2012 software programme and digital photographs containing visible cracks. The measurement accuracy amounted to 4 μ m. The number of measurements performed for each crack varied as measurements of crack widths were performed at 1 millimetre intervals. Therefore, depending on the length of each crack, the number of measurements varied between a few to more than a hundred. The designations and widths of the cracks in the butt joints are presented in Table 1.

Number of joint	Crack number	Crack width, μm				
	1	8÷612				
Ι	2	28÷368				
	3	4÷340				
II	1	4÷456				
III	1	4÷204				
	1	4÷272				
13.7	2	$4 \div 48$				
1V	3	4÷248				
	4	4÷104				
V	1	4÷684				
VI	1	4÷1228				

Table 1. Designations and the width of the cracks in the	
butt joints made of Nickel 200	

The width of 11 measured cracks was restrained within the range of 4÷1228 µm. Before breaking, the crack areas (in order to measure the roughness profile of crack surfaces) were subjected to dye penetrant tests. The penetrant tests of the cracks involved the use of a set of testing aerosols designated, following the requirements of standard PN-EN ISO 3452-1, as IICe-2, type 'Diffu-Therm', manufactured by H. Klumpf Techn. Chemie KG D-45699 Herten. The aerosols used in the tests were as follows:

penetrant – red colour, type BDR-L, lot no.:
20 15, filling date: 09/2015;

Fig. 4. Exemplary cracks in the butt joints made of nickel (magnified 28.5x)

CC BY-NC

- remover type BRE, lot no.: 22 16, filling date: 02/2015;
- developer type BEA, lot no.: 23 16, filling date: 06/2015;
- guarantee period 2 years;
- no chlorine or sulphur compounds in the chemical composition.

The tests involved the use of the following measuring equipment:

- luxmeter type LX 105 manufactured by the company "LX Lutron";
- thermometer/hygrometer, model 303;
- caliper with measurement accuracy of 0.02 mm;
- workshop magnifying glass (4x);
- non-shredding fabric.

The penetrant tests of the cracks were conducted in the following conditions:

- temperature of tested surface 22°C;
- ambient humidity 23%;
- penetration time 10, 30, 90 and 120 minutes;
- development time until the end of indication development;
- illuminance of tested surface 584 lx;
- observation distance 10-30 cm;
- observation angle from 60 to 90°.

The tests involved all of the cracks in several tests, where variables were the time of penetration and the time of development. The time of penetration amounted to 10, 30 and 120 minutes; the penetrant was applied several times so that a surface subjected to the tests was permanently covered by the penetrant. The different values of penetration time enabled examining the effect of the time of penetration on the time of development. On the basis of information contained in reference publications, the time of penetration was extended to 120 minutes, in comparison with recommendations of related standards, stating that the time of penetration should be restricted within the range of 5 to 60 minutes. The additional measurement was related to the time of development when the penetrant was applied only one time (90 minutes). The measurements of indications were conducted after 5,

10, 15, 20, 30, 40, 50 and 60 minutes etc., until the end of the development of a given indication (Table 2). Only one indication of the longest crack was recorded for each specimen. Each penetrant test was performed 3 times for specific parameters and the results were averaged.

The measurements performed at the initial stage of indication appearance aimed at the more accurate determination of the dependence being the subject of this work and the dynamics of crack formation. The adopted maximum time of indication development exceeded the recommendations formulated in standard PN-EN ISO 3452-1, stating that the time of development should be restricted within the range of 10 to 30 minutes. The time adopted in the tests was extended in order to determine the recommended time of indication development regardless of the recommendation specified in the above named standard. The specimens with developed indications are presented in Figure 5.

Fig. 5. Selected specimens made of nickel with indications originated in cracks. Roman numerals represent numbers of successive joints

Table 2. Sizes of indications originated in the cracks formed on the joints made of nickel. The penetrant was applied so that the entire tested surface was permanently covered by the penetrant; * - test joint covered by the penetrant once

Time of pencina U US US <thus< th=""> US US</thus<>		Specimen no. I																				
protection is io is io	Time of	Development time, min																				
ital ital <th< td=""><td>penetra-</td><td>F</td><td>10</td><td>1.5</td><td>20</td><td>25</td><td>20</td><td>10</td><td>50</td><td>-</td><td>70</td><td>00</td><td></td><td>100</td><td>110</td><td>120</td><td>1.40</td><td>170</td><td>200</td><td>220</td><td>200</td></th<>	penetra-	F	10	1.5	20	25	20	10	50	-	70	00		100	110	120	1.40	170	200	220	200	
10 40.5 42.0 4	tion, min	5	10	15	20	25	30	40	50	60	70	80	90	100	110	120	140	170	200	230	260	
30 40.0 42.0 43.5 47.5 47.0 47.0 48.0 45.1 52.0 53.0 53.5 54.5 55.0 56.0 57.0 57.5 . 90* 300 41.0 42.2 43.0 45.5 47.0 48.0 48.0 50.0 52.0 52.0 53.0	10	40.5	42.0	43.5	44.5	46.0	47.5	48.5	49.5	51.0	52.0	52.5	53.0	53.5	54.0	54.5	55.0	56.0	-	-	-	
120 390 41.0 42.5 47.0 48.0 48.0 50.0 52.0 52.5 53.0 53.5 54.0 55.0 57.0 57.5 5	30	40.0	42.0	43.5	45.0	46.0	47.5	49.0	50.0	51.5	52.0	52.5	53.0	53.5	54.5	55.0	56.0	57.0	57.5	-	-	
90° 30.0 41.0 42.0 43.5 45.0 48.0 48.5 a <td>120</td> <td>39.0</td> <td>41.0</td> <td>42.5</td> <td>44.0</td> <td>45.5</td> <td>47.0</td> <td>48.0</td> <td>49.0</td> <td>50.0</td> <td>51.0</td> <td>52.0</td> <td>52.5</td> <td>53.0</td> <td>53.5</td> <td>54.0</td> <td>55.0</td> <td>56.0</td> <td>57.0</td> <td>57.5</td> <td>-</td>	120	39.0	41.0	42.5	44.0	45.5	47.0	48.0	49.0	50.0	51.0	52.0	52.5	53.0	53.5	54.0	55.0	56.0	57.0	57.5	-	
Specimen no. II Time of penetra- tion, min S 10 <th colspa="</td"><td>90*</td><td>39.0</td><td>41.0</td><td>42.0</td><td>43.5</td><td>45.0</td><td>45.5</td><td>47.0</td><td>48.0</td><td>48.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th>	<td>90*</td> <td>39.0</td> <td>41.0</td> <td>42.0</td> <td>43.5</td> <td>45.0</td> <td>45.5</td> <td>47.0</td> <td>48.0</td> <td>48.5</td> <td>-</td>	90*	39.0	41.0	42.0	43.5	45.0	45.5	47.0	48.0	48.5	-	-	-	-	-	-	-	-	-	-	-
Time of penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Spe</td><td>cime</td><td>n no.</td><td>II</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									Spe	cime	n no.	II										
	Time of	Development time, min																				
iton, min 5 10 13 20 20 30 70 80 80 70 80 10 <	penetra-	-	10	1.5		25	20	10	50		70		00	100	110	120	1.40	170	200	220	200	
10 46.0 48.5 490 49.5 50.0 50.5 51.5 52.0 52.5 53.0 53.5 54.0 56	tion, min	5	10	15	20	25	30	40	50	60	70	80	90	100	110	120	140	170	200	230	260	
30 47.0 47.5 48.5 49.0 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 -	10	46.0	48.0	48.5	49.0	49.5	50.0	50.5	51.5	52.0	52.5	53.0	53.5	54.0	54.5	-	-	-	-	-	-	
120 47.0 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 51.0 51.5 51.0 51.5 51.0 51.5 51.0 51.5 51.0 51.5 51.0 51.5 51.0 <th< td=""><td>30</td><td>47.0</td><td>47.5</td><td>48.5</td><td>49.0</td><td>49.5</td><td>50.0</td><td>50.5</td><td>51.0</td><td>51.5</td><td>52.0</td><td>52.5</td><td>53.0</td><td>53.5</td><td>54.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	30	47.0	47.5	48.5	49.0	49.5	50.0	50.5	51.0	51.5	52.0	52.5	53.0	53.5	54.0	-	-	-	-	-	-	
90° 47.0 48.0 48.5 49.5 -	120	47.0	48.0	48.5	49.0	49.5	50.0	50.5	51.0	51.5	52.0	52.5	53.0	53.5	54.0	54.5	55.0	56.0	57.0	-	-	
Specimen no. III Time of penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 10 120 140 170 200 230 260 10 9.0 - <td>90*</td> <td>47.0</td> <td>48.0</td> <td>48.5</td> <td>49.5</td> <td>-</td>	90*	47.0	48.0	48.5	49.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Time of penta-tion, min 5 10 15 20 25 30 40 50 60 70 80 90 10 10 120 140 170 200 230 200 10 9.0 -									Spee	cimer	n no.	III										
	Time of								De	evelop	ment	time,	min									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	penetra-	F	10	15	20	25	20	40	50	60	70	80	00	100	110	120	140	170	200	220	260	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tion, min	5	10	15	20	23	50	40	50	00	70	80	90	100	110	120	140	170	200	230	200	
30 8.5 -	10	9.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
120 9,0 - <td>30</td> <td>8.5</td> <td>-</td>	30	8.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
90* 8.0 - <td>120</td> <td>9.0</td> <td>-</td>	120	9.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Specimen no. IV Development time, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 52.5 56.0 57.5 59.0 60.0 61.5 63.0 65.5 66.0 67.0 68.0 68.5 6.9.0 6.1 6	90*	8.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Time of penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 52.5 56.0 57.5 59.0 60.0 61.5 63.0 64.5 65.0 67.0 68.0 68.5 69.0 0.0 0.0									Spee	cimer	n no.	IV								1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time of								De	evelop	ment	time,	min									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	penetra-	5	10	15	20	25	30	40	50	60	70	80	90	100	110	120	140	170	200	230	260	
10 3.2. 3.0. 3.0. 3.0. 3.0. 0.0. <	11011, 111111					50.5	(1.0	(0.5	64.0	(5.0	66.0		67.5	68.0	68 5							
300 30.3 30.3 30.3 30.3 30.3 60.3 61.3 60.3 61.3 60.3 61.3 60.3 61.3 60.3	10	525	56.0	57.0	585		610	615		6511		67.0		00.0	00						-	
120 3.03 3.03 3.03 3.03 0.03	10	52.5	56.0	57.0	58.5	59.5 60.0	61.0	62.5 63.0	64.5	65.0	66.0	67.0	68.0	68.5	68.5	- 69.0	-		-	-	_	
90 35.0 39.5 60.0 60.5 1 <th1< th=""> <th1< th=""> 1 <!--</td--><td>10 30</td><td>52.5 53.0</td><td>56.0 56.5</td><td>57.0 57.5</td><td>58.5 59.0</td><td>60.0</td><td>61.0 61.5</td><td>62.5 63.0</td><td>64.5</td><td>65.0 65.5</td><td>66.0</td><td>67.0 67.0</td><td>67.5 68.0</td><td>68.5</td><td>68.5</td><td>- 69.0</td><td>- 70.0</td><td>- 71.0</td><td>-</td><td>-</td><td>-</td></th1<></th1<>	10 30	52.5 53.0	56.0 56.5	57.0 57.5	58.5 59.0	60.0	61.0 61.5	62.5 63.0	64.5	65.0 65.5	66.0	67.0 67.0	67.5 68.0	68.5	68.5	- 69.0	- 70.0	- 71.0	-	-	-	
Specificity in the vertice of the second state of	10 30 120	52.5 53.0 53.0	56.0 56.5 56.0	57.0 57.5 57.5	58.5 59.0 59.0	60.0 60.5	61.0 61.5 62.0	62.5 63.0 63.0	64.5 64.0	65.0 65.5 65.0	66.0 66.0	67.0 67.0 67.0	67.3 68.0 68.0	68.5 68.5	68.5 69.0	69.0 69.5	- 70.0	71.0	-	-	-	
Development time, min Development time, min penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 143.0 146.0 148.0 149.0 150.0 151.0 153.0 155.0 156.0 157.0 158.0 159.0 159.0 159.0 160.0 .<	10 30 120 90*	52.5 53.0 53.0 59.0	56.0 56.5 56.0 59.5	57.0 57.5 57.5 60.0	58.5 59.0 59.0 60.5	60.0 60.5	61.0 61.5 62.0	62.5 63.0 63.0	64.5 64.0	65.0 65.5 65.0 -	66.0 66.0	67.0 67.0 - V	67.5 68.0 68.0	68.5 68.5 -	68.5 69.0	69.0 69.5	- 70.0	71.0	-		-	
printing 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 143.0 146.0 148.0 149.0 150.0 151.0 153.0 155.0 156.0 157.0 158.0 159.0 159.5 160.0 -	10 30 120 90*	52.5 53.0 53.0 59.0	56.0 56.5 56.0 59.5	57.0 57.5 57.5 60.0	58.5 59.0 59.0 60.5	60.0 60.5	61.0 61.5 62.0	62.5 63.0 63.0	64.5 64.0 - Spe	65.0 65.5 - cime:	66.0 66.0 - n no.	67.0 67.0 67.0 - V	67.5 68.0 -	68.5 68.5 -	68.5 69.0	- 69.0 69.5 -	- 70.0	- 71.0	-		-	
10 143.0 146.0 148.0 149.0 150.0 151.0 153.0 155.0 156.0 157.0 158.0 159.0 159.5 160.0 - </td <td>10 30 120 90*</td> <td>52.5 53.0 53.0 59.0</td> <td>56.0 56.5 56.0 59.5</td> <td>57.0 57.5 57.5 60.0</td> <td>58.5 59.0 59.0 60.5</td> <td>60.0 60.5</td> <td>61.0 61.5 62.0</td> <td>62.5 63.0 63.0</td> <td>64.5 64.0 - Spe</td> <td>65.0 65.0 - cime</td> <td>66.0 66.0 - n no.</td> <td>67.0 67.0 67.0 - V time,</td> <td>67.5 68.0 -</td> <td>68.5 68.5 -</td> <td>68.5 69.0 -</td> <td>- 69.0 69.5 -</td> <td>- 70.0</td> <td>- 71.0</td> <td>-</td> <td>-</td> <td>-</td>	10 30 120 90*	52.5 53.0 53.0 59.0	56.0 56.5 56.0 59.5	57.0 57.5 57.5 60.0	58.5 59.0 59.0 60.5	60.0 60.5	61.0 61.5 62.0	62.5 63.0 63.0	64.5 64.0 - Spe	65.0 65.0 - cime	66.0 66.0 - n no.	67.0 67.0 67.0 - V time,	67.5 68.0 -	68.5 68.5 -	68.5 69.0 -	- 69.0 69.5 -	- 70.0	- 71.0	-	-	-	
10 1440 1460 1480 149.5 151.0 152.0 154.0 155.5 156.0 157.0 158.0 159.0 159.5 1.6 <th1.6< th=""> 1.6 1.6 <th< td=""><td>10 30 120 90* Time of penetra- tion, min</td><td>52.5 53.0 53.0 59.0</td><td>56.0 56.5 56.0 59.5</td><td>57.0 57.5 57.5 60.0</td><td>58.5 59.0 59.0 60.5</td><td>59.5 60.0 60.5 -</td><td>61.0 61.5 62.0 -</td><td>62.5 63.0 63.0 -</td><td>64.5 64.0 - Spe Do</td><td>65.0 65.5 65.0 - cime: evelop</td><td>66.0 66.0 - n no. pment 70</td><td>67.0 67.0 67.0 - V time, 80</td><td>67.3 68.0 - min 90</td><td>68.5 68.5 -</td><td>68.5 69.0 -</td><td>- 69.0 69.5 -</td><td>- 70.0 -</td><td>- 71.0 - 170</td><td>- - - 200</td><td></td><td>- - 260</td></th<></th1.6<>	10 30 120 90* Time of penetra- tion, min	52.5 53.0 53.0 59.0	56.0 56.5 56.0 59.5	57.0 57.5 57.5 60.0	58.5 59.0 59.0 60.5	59.5 60.0 60.5 -	61.0 61.5 62.0 -	62.5 63.0 63.0 -	64.5 64.0 - Spe Do	65.0 65.5 65.0 - cime: evelop	66.0 66.0 - n no. pment 70	67.0 67.0 67.0 - V time, 80	67.3 68.0 - min 90	68.5 68.5 -	68.5 69.0 -	- 69.0 69.5 -	- 70.0 -	- 71.0 - 170	- - - 200		- - 260	
120 144.0 146.0 148.5 150.0 151.0 152.0 154.0 156.0 157.0 158.0 159.0 159.0 159.0 160.0 160.5 161.5 162.0 . . 90* 143.0 146.0 148.0 149.0 150.0 151.0 152.0 .	10 30 120 90* Time of penetra- tion, min	52.5 53.0 53.0 59.0 5 143.0	56.0 56.5 56.0 59.5 10	57.0 57.5 57.5 60.0 15	58.5 59.0 59.0 60.5 20 149.0	 39.3 60.0 60.5 - 25 150.0 	61.0 61.5 62.0 - 30 151.0	62.5 63.0 - 40	64.5 64.0 - Spe Do 50	65.0 65.5 65.0 - cime: evelop 60	66.0 66.0 - n no. pment 70	67.0 67.0 - - V time, 80 158.0	67.3 68.0 - min 90	68.5 68.5 - 100 159.5	68.5 69.0 - 1110 160.0	- 69.0 69.5 - 120	- 70.0 - 140	- 71.0 - 170	- - - 200		- - - 260	
90* 143.0 146.0 148.0 149.0 150.0 151.0 152.0 .	10 30 120 90* Time of penetra- tion, min 10 30	52.5 53.0 53.0 59.0 5 143.0 144.0	56.0 56.5 59.5 10 146.0 146.0	57.0 57.5 57.5 60.0 15 148.0 148.0	58.5 59.0 60.5 20 149.0 149.5	25 150.0	61.0 61.5 62.0 - 30 151.0 152.0	62.5 63.0 - 40 153.0 154.0	64.5 64.0 - Spe Do 155.0	65.0 65.5 65.0 - cime: evelop 60 156.0	66.0 66.0 - n no. pment 70 157.0	67.0 67.0 - - V time, 80 158.0	67.3 68.0 - min 90 159.0	68.5 68.5 - 100 159.5	68.5 69.0 - 110 160.0	- 69.0 69.5 - 120 -	- 70.0 - 140 -	- 71.0 - 170 -	- - - 200 -	- - - 230 -	- - 260 -	
Specimen no. VI Time of penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 74.5 76.0 78.0 79.5 80.5 81.0 82.0 83.0 84.0 85.0 85.5 86.0 86.5 -	10 30 120 90* Time of penetra- tion, min 10 30 120	52.5 53.0 53.0 59.0 5 143.0 144.0 144.0	56.0 56.5 56.0 59.5 10 146.0 146.0	57.0 57.5 57.5 60.0 15 148.0 148.0 148.5	58.5 59.0 60.5 20 149.0 149.5 150.0	39.3 60.0 60.5 - 25 150.0 151.0	61.0 61.5 62.0 - 30 151.0 152.0	62.5 63.0 - 40 153.0 154.0	64.5 64.0 - Spe Do 50 155.0 155.5 156.0	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0	66.0 66.0 - n no. pment 70 157.0 157.0 158.0	67.0 67.0 - V time, 80 158.0 158.0	67.3 68.0 - min 90 159.0 159.0	68.5 - - 100 159.5 159.5	68.5 69.0 - 110 160.0 - 159.5	- 69.0 69.5 - 120 - -	- 70.0 - 140 - -	- 71.0 - 170 - 161.5	- - - 200 - -	- - - 230 - -	- - 260 -	
Specimen no. VI Time of penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 74.5 76.0 78.0 79.5 80.5 81.0 82.0 83.0 84.0 85.5 86.0 86.5 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90*	52.5 53.0 59.0 5 143.0 144.0 144.0 143.0	56.0 56.5 59.5 10 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.5 150.0 149.0	25 150.0 151.0 150.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151.0	62.5 63.0 - 40 153.0 154.0 154.0 152.0	64.5 64.0 - Spe Do 50 155.0 155.5 156.0 -	65.0 65.5 cime: evelop 60 156.0 156.0	66.0 66.0 - n no. - - - - - - - - - - - - - - - - - - -	67.0 67.0 - V time, 80 158.0 158.0	67.3 68.0 - - 90 159.0 159.0 159.0	68.5 - - 100 159.5 159.5	68.5 69.0 - 1110 160.0 - 159.5	- 69.0 69.5 - 120 - 160.0	- 70.0 - 140 - 160.5	- 71.0 - 170 - 161.5 -	- - - 200 - 162.0		- - - 260 - - -	
Time of penetra-tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 74.5 76.0 78.0 79.5 80.5 81.0 82.0 83.0 84.0 85.0 86.5 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90*	52.5 53.0 59.0 59.0 5 143.0 144.0 144.0 143.0	56.0 56.5 59.5 10 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.0 149.0	25 150.0 151.0 150.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151.0	62.5 63.0 - 40 153.0 154.0 154.0 152,0	64.5 64.0 - Spe Do 50 155.0 155.5 156.0 -	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0 -	66.0 66.0 - n no. pment 70 157.0 157.0 158.0 -	67.0 67.0 - V time, 80 158.0 158.0 158.5 -	67.3 68.0 - - min 90 159.0 159.0 159.0 -	68.5 - - 100 159.5 159.5 159.0 -	68.5 69.0 - 110 160.0 - 159.5 -	- 69.0 69.5 - 120 - 160.0 -	- 70.0 - 140 - 160.5 -	- 71.0 - 170 - 161.5 -	- - - 200 - 162.0 -	- - - 230 - - - -	- - 260 - - - -	
penetra- tion, min 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 140 170 200 230 260 10 74.5 76.0 78.0 79.5 80.5 81.0 82.0 83.0 84.0 85.0 85.5 86.0 86.5 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90*	52.5 53.0 59.0 5 143.0 144.0 144.0 143.0	56.0 56.5 59.5 10 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0	25 150.0 151.0 150.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151,0	62.5 63.0 - 40 153.0 154.0 154.0 152,0	64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec	65.0 65.5 cime: evelop 60 156.0 156.0 157.0 -	66.0 66.0 - m no. pment 70 157.0 157.0 158.0 -	67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI	67.3 68.0 - - 90 159.0 159.0 159.0 -	68.5 - 100 159.5 159.0 -	68.5 69.0 - 110 160.0 - 159.5 -	- 69.0 - 120 - 160.0 -	- 70.0 - 140 - 160.5 -	- 71.0 - 170 - 161.5 -	- - - 200 - 162.0 -		- - - 260 - - - -	
Infinition Test Test <td>10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of</td> <td>52.5 53.0 59.0 59.0 143.0 144.0 144.0</td> <td>56.0 56.5 59.5 10 146.0 146.0 146.0</td> <td>57.0 57.5 60.0 15 148.0 148.5 148.0</td> <td>58.5 59.0 60.5 20 149.0 149.0 149.0</td> <td>25 150.0 151.0 150.0</td> <td>61.0 61.5 62.0 - 30 151.0 152.0 152.0 151.0</td> <td>62.5 63.0 - 40 153.0 154.0 154.0 152,0</td> <td>64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec Do</td> <td>65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0 - cimer evelop</td> <td>66.0 66.0 - m no. - - - - - - - - - - - - - - - - - - -</td> <td>67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI time,</td> <td>67.3 68.0 - - min 90 159.0 159.0 159.0 - -</td> <td>68.5 - 100 159.5 159.5 159.0 -</td> <td>68.5 69.0 - 110 160.0 - 159.5 -</td> <td>- 69.0 69.5 - 120 - 160.0 -</td> <td>- 70.0 - 140 - 160.5 -</td> <td>- 71.0 - 170 - 161.5 -</td> <td>- - - 200 - 162.0 -</td> <td>- - - - - - - -</td> <td>- - 260 - - -</td>	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of	52.5 53.0 59.0 59.0 143.0 144.0 144.0	56.0 56.5 59.5 10 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.0 149.0	25 150.0 151.0 150.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151.0	62.5 63.0 - 40 153.0 154.0 154.0 152,0	64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec Do	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0 - cimer evelop	66.0 66.0 - m no. - - - - - - - - - - - - - - - - - - -	67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI time,	67.3 68.0 - - min 90 159.0 159.0 159.0 - -	68.5 - 100 159.5 159.5 159.0 -	68.5 69.0 - 110 160.0 - 159.5 -	- 69.0 69.5 - 120 - 160.0 -	- 70.0 - 140 - 160.5 -	- 71.0 - 170 - 161.5 -	- - - 200 - 162.0 -	- - - - - - - -	- - 260 - - -	
10 74.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 80.0 81.0 82.5 83.5 84.0 84.5 85.0 86.0 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of penetra- tion grip	52.5 53.0 59.0 5 143.0 144.0 144.0 143.0	56.0 56.5 59.5 10 146.0 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0	25 150.0 151.0 150.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151,0	62.5 63.0 - 40 153.0 154.0 154.0 152,0	64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec 50	65.0 65.5 65.0 - cime: 60 156.0 156.0 156.0 157.0 - cimer evelop 60	66.0 66.0 - m no. pment 70 157.0 157.0 158.0 - n no. 70 ment 70	67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI time, 80	67.3 68.0 - - min 90 159.0 159.0 159.0 - - min 90	68.5 - 100 159.5 159.0 - -	 68.5 69.0 - 110 160.0 - 159.5 - 110 	- 69.0 69.5 - 120 - 160.0 - 120	- 70.0 - 140 - 160.5 - 140	- 71.0 - 170 - 161.5 - 170	- - - 200 - 162.0 - - 200	230	- - 260 - - - - 260	
30 73.0 77.0 78.0 79.0 80.0 81.0 82.5 83.5 84.0 84.0 86.0 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of penetra- tion, min	52.5 53.0 53.0 59.0 5 143.0 144.0 144.0 143.0 5 5	56.0 56.5 59.5 10 146.0 146.0 146.0 146.0	57.0 57.5 60.0 15 148.0 148.0 148.5 148.0 148.5 148.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0 20	25 150.0 151.0 150.0 25 25	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151,0 30 81.0	62.5 63.0 - 40 153.0 154.0 154.0 152,0 40	64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec 50	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0 - cimer evelop 60 84.0	66.0 66.0 - n no. - - - - - - - - - - - - - - - - - - -	67.0 67.0 - V time, 80 158.0 158.5 - VI time, 80	67.3 68.0 - - min 90 159.0 159.0 159.0 - - min 90	68.5 68.5 - 100 159.5 159.5 159.0 - 100 86.5	68.5 69.0 - 110 160.0 - 159.5 - 110	- 69.0 69.5 - 120 - 160.0 - 120	- 70.0 - 140 - 160.5 - 140	- 71.0 - 170 - 161.5 - 170	- - - 200 - 162.0 - 200	- - - - - - - - - - - - 230	- - 260 - - - 260	
120 73.0 76.0 79.0 80.0 81.0 81.0 82.5 85.0 85.0 80.0 80.5 87.0 87.0 87.0 89.0 89.5 -	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of penetra- tion, min 10	52.5 53.0 53.0 59.0 5 143.0 144.0 144.0 144.0 143.0 5 74.5 75.0	56.0 56.5 59.5 10 146.0 146.0 146.0 146.0 146.0 146.0 146.0 146.0 76.0	57.0 57.5 60.0 15 148.0 148.0 148.0 148.5 148.0 148.5 148.0 148.0 78.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0 149.0 20 79.5 70.0	25 150.0 151.0 150.0 25 80.5 80.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151,0 30 81.0 81.0	62.5 63.0 - 40 153.0 154.0 154.0 152,0 40 82.0 82.5	64.5 64.0 - Spe 50 155.5 156.0 - Spec 50 83.0 83.0	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 156.0 157.0 - cimer evelop 60 84.0 84.0 84.0	66.0 66.0 - m no. pment 70 157.0 157.0 158.0 - n no. 70 85.0 85.0 84.5	67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI time, 80 85.5 85.0	67.3 68.0 - - min 90 159.0 159.0 159.0 - - min 90 86.0 86.0	68.5 - - 100 159.5 159.0 - - 100 86.5	68.5 69.0 - 1100 160.0 - 159.5 - 1100 -	- 69.0 69.5 - 120 - 160.0 - 120 -	- 70.0 - 140 - 160.5 - 140 -	- 71.0 - 170 - 161.5 - 170 -	- - - 200 - 162.0 - 200 -	- - - - - - - - - - - - - - - - - - -	- - 260 - - - - 260 -	
Note: Indication sizes provide information about the greatest values of indication in millimetres	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of penetra- tion, min 10 30	52.5 53.0 53.0 59.0 5 143.0 144.0 144.0 144.0 143.0 5 74.5 75.0 75.0	56.0 56.5 59.5 10 146.0 146.0 146.0 146.0 146.0 146.0 146.0 146.0 745.0	57.0 57.5 60.0 15 148.0 148.0 148.5 148.0 148.5 148.0 148.5 148.0 78.0 78.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0 20 79.5 79.0 79.0	39.3 60.0 60.5 - 25 150.0 151.0 151.0 150.0 25 80.5 80.0 80.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 152.0 151,0 30 81.0 81.0 81.0	62.5 63.0 - 40 153.0 154.0 154.0 154.0 152,0 40 82.0 82.5 82.5	64.5 64.0 - Spe 50 155.0 155.5 156.0 - Spec 50 83.0 83.5 83.5	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 157.0 - cimer evelop 60 84.0 84.0 84.0 85.0	66.0 66.0 - m no. - - - - - - - - - - - - -	67.0 67.0 - V time, 80 158.0 158.0 158.5 VI time, 80 85.5 85.0 85.0	67.3 68.0 - min 90 159.0 159.0 159.0 159.0 2.5 min 90 86.0 86.0 86.0 86.0	68.5 68.5 - 100 159.5 159.0 - 100 86.5 - 87.0	68.5 69.0 - 110 160.0 - 159.5 - 110 110 - - - 2 7.5	- 69.0 69.5 - 120 - 160.0 - 120 - 120 - 88.0	- 70.0 - 140 - 160.5 - 160.5 - 140 - 140 -	- 71.0 - 170 - 161.5 - 170 - 170 - 205	- - - 200 - 162.0 - - 200 - -	- - - 230 - - - - - 230 -	- - 260 - - - - 260 - -	
	10 30 120 90* Time of penetra- tion, min 10 30 120 90* Time of penetra- tion, min 10 30 120 30 120	52.5 53.0 53.0 59.0 5 143.0 144.0 144.0 144.0 143.0 5 74.5 75.0 75.0 77.0	56.0 56.5 59.5 10 146.0 146.0 146.0 146.0 146.0 146.0 146.0 76.0 77.0 76.5 78.0	57.0 57.5 60.0 15 148.0 148.0 148.0 148.5 148.0 148.0 148.0 148.0 78.0 78.0 78.0 78.0	58.5 59.0 60.5 20 149.0 149.0 149.0 149.0 149.0 20 79.5 79.0 79.0 80.5	25 150.0 151.0 151.0 150.0 25 80.5 80.0 81.0	61.0 61.5 62.0 - 30 151.0 152.0 152.0 151.0 151.0 151.0 81.0 81.0 81.0 81.0	62.5 63.0 - 40 153.0 154.0 154.0 152,0 40 82.0 82.5 82.5 81.5	64.5 64.0 - Spe 50 155.5 156.0 - Spec 50 83.0 83.5 83.5 83.5	65.0 65.5 65.0 - cime: evelop 60 156.0 156.0 156.0 157.0 - cimer evelop 60 84.0 84.0 84.0 84.0 84.0	66.0 66.0 - m no. - ment 70 157.0 157.0 157.0 158.0 - ment 70 85.0 84.5 85.5	67.0 67.0 - V time, 80 158.0 158.0 158.5 - VI time, 80 85.5 85.0 86.0	67.3 68.0 - min 90 159.0 159.0 159.0 - min 90 86.0 86.0 86.5	68.5 - 100 159.5 159.0 - 100 86.5 - 87.0	68.5 69.0 - 1100 160.0 - 159.5 - 1100 - 87.5	- 69.0 69.5 - 120 - 160.0 - 120 - 88.0	- 70.0 - 140 - 160.5 - 160.5 - 140 - 89.0	- 71.0 - 170 - 161.5 - 170 - 170 - 89.5	- - - 200 - 162.0 - - 200 - - -	- - - 230 - - - -	- - - - - - - - - - - - - - - - - -	

The penetrant tests of the nickel specimens containing the cracks revealed that one of the objectives of the work had been satisfied. The tested differences in penetration time related to the joints made of nickel revealed that at longer penetration times (120 minutes) indications were greater, which could imply the necessity of extending both the time of penetration and the time of development in relation to these materials. Sometimes, at a shorter penetration time (10 minutes), the indications were slightly greater than those obtained at a penetration time of 30 minutes. Such differences rather demonstrated the specific nature of the test process itself as the process of penetrant testing consists of a number of phases, each of which must be performed paying significant attention to detail. Each negligence, usually unintended, in the testing process decreases its sensitivity, leading to the obtainment of a different final result. Knowing this, it is easy to explain detected inaccuracies, i.e. greater indications obtained at shorter penetration times. When the penetrant was ap- it possible to measure the following profiles: plied once, the indications were significantly – roughness (R), smaller and the time of development was short- - waviness (W), er. It was also noticeable that in most of the cas- – primary profile (P) and roughness core paes, the size of indications grew dynamically up to approximately 15-20 minutes of development time. After this time, the increase in indications was very slow and in most of the cases finished after approximately 200 minutes (Fig. 6).

Fig. 6. Dependences between indication sizes and development times for the cracks formed in the joint made of nickel

This implies that when performing penetrant tests of joints made of nickel and its alloys, the time mentioned above can be recognised as adequate for detecting unallowed external imperfections (such as cracks). The tests also revealed a tendency that an increase in the width of a crack was accompanied by an increase in the time of development.

Another stage of the tests involved measurements of crack surface roughness. In order to determine profiles of roughness in the cracks, the butt joints were broken in the areas where the cracks were formed. The rig used for testing the profile of roughness was provided with the Turbo Datawin-NT software programme integrated with a Hommel tester T1000 (contact profile measurement gauge) (Fig. 7). The measurement equipment enabled complex dimensional and statistical analyses of microgeometrical parameters as well as the visualisation of the stereometric structure of a surface subjected to measurement. The equipment made

- rameters (Rk) as well as parameters of the motif-detection method (WD1 and WD2).

Fig. 7. Hommel tester T1000 contact profile measurement gauge

(cc) BY-NC

Such a wide range of measurements was necessary in order to determine correct values of the surface roughness profile. An issue posing difficulty was the waviness of the surface, the roughness of which was to be measured. As a result, the equipment made two measurements, i.e. the surface profile and the roughness profile (Fig. 8).

After approximating the value obtained after measuring the surface profile, the software programme converts this value into the profile of roughness. In addition, during measurements, the screen displays the visualisation of the stereometric structure of the surface being measured (Fig. 9).

The software programme integrated with the profile measurement gauge provides a lot of data concerning the surface being measured (Fig. 10). This work discusses one of these parameters, namely Ra, i.e. the average arithmetic deviation of the profile from the average line. The profile of roughness was measured for each crack in 3 areas; afterwards, measurement results were averaged (Table 3). Due to the shape of the joint surface after breaking, not all cracks could be measured.

The roughness of surface was measured in accordance with recommendations specified in standard PN-EN ISO 4288:2011E. The length of elementary segment l_r amounted to 0.8 mm or 2.5 mm, whereas the length of measurement segment l_t amounted to 4.8 mm and 15 mm respectively.

Fig. 8. Measurement of surface roughness (top) and of the profile (bottom)

Fig. 9. Visualisation of the stereometric structure of the surface being measured

Fig. 10. Window of the Turbo Datawin-NT software programme. The red colour indicates parameter Ra (analysed in the work)

Table 3. Roughness of surfaces of the cracks detected in nickel Nickel 200

Plate/joint	I	I	I	II	III	IV	IV	IV	IV	V	VI
Crack	1	2	3	1	1	1	2	3	4	1	1
Roughness <i>Ra</i> , µm	3.98	4.57	5.15	2.41	2.61	7.40	1.39	2.56	3.40	1.66	4.00

Note: Roman numerals represent numbers of successive joints; Arabic numerals represent number of successive cracks in a given joint

The value of the elementary segment and the value of the measurement segment depend on the range of roughness expected on the surface being measured.

The roughness of crack surfaces was restricted within the range of 2.01 to 13.24. When comparing the results concerning the roughness of crack surfaces it was noticed that in relation to previously performed penetrant tests. the time of development was longer in cases of cracks characterised by a greater roughness of surface.

Conclusions

The analysis of the test results led to the formulation of the following conclusions:

1. As regards penetrant tests of nickel and its alloys, the time of penetration significantly affected times of development and sizes of indications and, therefore should be extended to 120 minutes.

2. In most cases, the single-time application of a penetrant resulted in a shorter development time and smaller-sized indications in comparison with situations when a penetrant was applied several times.

3. Each of the tested factors significantly affected development times in the penetrant tests, which was demonstrated by various develop- • PN-EN ISO 3452-3: Non-destructive testing ment times in cases of various cracks.

face was accompanied by an increase in the time of development, which could probably be attributed to the greater spread of the surface and, as a result, the greater volume of penetrant located in a given discontinuity.

5. An increase in the width of a crack was accompanied by an increase in the time of deume of penetrant in a given crack.

6. It is recommended that in penetrant tests of nickel and its alloys the time of development be extended to approximately 200 minutes. In most cases, such a time is sufficient for detecting unacceptable welding imperfections.

References:

- [1] Czuchryj J., Hyc K.: Dye-penetrant method assessment of the size of surface discontinuities in products made of carbon structural steel. Biuletyn Instytutu Spawalnictwa, 2012, no. 02, pp. 37-45 http://bulletin.is.gliwice.pl/index. php?go=current&ebis=2012 02 04
- [2] Czuchryj J., Irek P.: Dye penetrant method of the assessment of the pores size in welded joints made of aluminium and its alloys. Biuletyn Instytutu Spawalnictwa, 2014, no. 4, pp. http://bulletin.is.gliwice.pl/index. php?go=current&ebis=2014 04 02
- [3] Czuchryj J., Irek P.: Dye-Penetrant Method Assessment of the Size of Pores in Welded Joints Made of High-Alloy Steel. Biuletyn Instytutu Spawalnictwa, 2015, no. 1, pp. 21-28 http://bulletin.is.gliwice.pl/index. php?go=current&ebis=2015_01_03

References standards:

- PN-EN ISO 3452-1: Non-destructive testing Penetrant testing — Part 1: General principles
- PN-EN ISO 3452-2: Non-destructive testing Penetrant testing — Part 2: Testing of penetrant materials
- Penetrant testing Part 3: Reference test blocks
- 4. An increase in the roughness of crack sur- PN-EN ISO 3452-4: Non-destructive testing Penetrant testing — Part 4: Equipment
 - PN-ISO 3058: Non-destructive testing Aids to visual inspection — Selection of low-power magnifiers
 - PN-EN ISO 3059: Non-destructive testing Penetrant testing and magnetic particle testing - Viewing conditions
- velopment; this was because of the greater vol- PN-EN ISO 12706: Non-destructive testing -Penetrant testing — Vocabulary
 - PN-EN ISO 6520-1: Welding and allied processes — Classification of geometric imperfections in metallic materials — Part 1: Fusion welding