
BIULETYN INSTYTUTU SPAWALNICTWANo. 1/2020 41

Antoni Sawicki

Mathematical Differential and Integral Models in the 
Macromodelling of Electric Arc Using Voltage and Current 
Controlled Sources Part 2. Selected Mathematical Arc 
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Abstract: The article justifies the application of explicitly defined static current 
and voltage characteristics in mathematical models of dynamic electric arc. The 
study involved the use of the generalised function approximating the above-
named characteristics to create the differential and integral forms of the Novik-
ov-Schellhase, Pentegov and Mayr-Pentegov mathematical models. Macromodels 
of arc were developed using the differential form of mathematical models and 
controlled voltage sources as well as using the integral form of models and con-
trolled current sources. The effectiveness of macromodels was verified by means 
of simulations of processes in circuits with electric arc.
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Introduction
The introduction of static characteristics to 
dynamic models of electric arc is connected 
with the adoption of certain additional sim-
plifying assumptions. If such a situation takes 
place when a mathematical model is nearly 
ready, the initial conditions of energy balance 
are at risk of deformation. As a result, the ap-
propriately precise modelling of physical pro-
cesses by mathematical models may be more 
difficult to demonstrate. A more favourable ap-
proach should involve the introduction of stat-
ic characteristics as early as at the initial stage 
of the development of a mathematical model. 

However, also in this case, as in any simplified 
model describing the extensive set of complex 
physical phenomena, it is necessary to apply 
many simplifying assumptions. The gradual 
abandonment of assumed simplifications may 
result from the Pareto principle, whereas the 
identification of parameters of models may re-
sult from optimisation procedures [1].  

The application of static characteristics for 
the development of dynamic models of elec-
tric arc facilitates the following:
1. identification of certain parameters of dy-

namic models in the differential and inte-
gral form [2]; 
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2. taking into consideration disturbances in 
the form of interference and control effects 
in  mathematical models; 

3. control of changes in characteristic paramet-
ers of electric arc (e.g. ignition voltage, re-
sidual conductance) [2–4]; 

4. in certain cases, interpretation of physical 
processes in circuits with electric arc. 
Engineering practice uses several well-

known mathematical differential models of 
electric arc including current-voltage char-
acteristics. The development of models in the 
integral form may enable the extension of tech-
nical applications of mathematical models with 
various forms of current-voltage characterist-
ics. The above-named forms are frequently pre-
ferred when developing models of burning arc 
exposed to intense external disturbances lead-
ing to instability [5, 6].

In the absence of intentional activities aimed 
to disturb the plasma column, dynamic charac-
teristics of arc are usually symmetric. In such 
a situation, the modelling of arc only requires 
the knowledge of the static characteristic in the 
first quarter of the coordinate system (I, U). The 
aforesaid approach makes it possible to sim-
plify experimental tests and create macromod-
els of electric arc.  

Differential and integral form of the 
Novikov-Schellhase model of electric 
arc 

The Mayr modified model of arc [7] can be 
presented in the conductance form 
   
   (1),

where qM – corresponds to the time of thermal 
process relaxation; electric power supplied 
to arc amounts to 

     (2).

If the static current-voltage characteristic 
U(I) is used, the power of arc dissipation is de-
scribed by the following dependence 

   
   (3),

where G(I) – static characteristic of column 
conductance. By substituting formulas (2) 
and (3) to (1) it is possible to obtain the Mayr 
modified equations in the conductance form 

   (4),

where
   (5),

and p designates the vector of the parameters 
of the characteristic. Based on the forego-
ing it is possible to express model (1) in the 
Novikov-Schellhase conductance form [8, 9]

  
(6).

Using equation (6) it is possible to obtain 
the macromodel of the arc column, where the 
voltage of the controlled voltage source is ex-
pressed by the following formula

      (7).

The transformation of formula (6) enables 
the obtainment of the integral form of the 
model. 

   (8).

In the macromodel built on the basis of the 
aforesaid integral model, an appropriately dir-
ected controlled source of current constitutes 
the non-linear conductance of arc
     (9).

The differential and integral form of 
the Pentegov model of electric arc 
The mathematical modelling of the dynamic 
characteristics of the electric arc column can be 
performed using the Pentegov model developed 
along with Sidoretz [10]. In the aforesaid model, 
hypothetical arc is considered instead of ac-
tual arc. In the hypothetical arc model the con-
ductance of the arc column is defined as the 
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function of fictitious (virtual) state current iq(t) 
described by differential equation 
     (10)

with defined time constant q = const. The Pen-
tegov model represents a non-linear two-ter-
minal network which is balanced in terms 
of energy, thermally inert of the 1st order, 
linear, stationary and electrically inertialess. 
In accordance with the adopted assumption, 
the current and voltage of the above-named 
model satisfy condition 
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where U(I) – static current-voltage charac-
teristic of arc. The Pentegov assumption 
imposes restrictions on the parameters of 
the mathematical model by the following 
dependence 
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where Q – plasma enthalpy. In the general 
case, arc column voltage  is expressed by 
dependence 

     (13).

In the macromodel of arc, the controlled 
voltage source, the value of which is expressed 
by formula (12), is directed oppositely to cur-
rent and, in this manner, has the properties of 
the passive non-linear element.  

The model expressed by equation (10) can 
also adopt the integral form 
   

 (14).

Similar to the Cassie equation and its 
modifications [11], the above presented equa-
tion can be on both sides provided with the 
extraction of roots. As a result, the equation 
becomes simplified and the value of denom-
inator containing time constant increases by 
twice. 
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The knowledge of state current iq makes it 
possible to determine the efficiency of i of the 
controlled current source having the proper-
ties of the passive non-linear element 

     (16).
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the Mayr-Pentegov model of electric 
arc

More generalised in relation to (10) is the 
equation of the Mayr-Pentegov having form [12]
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for enthalpy [13]. As previously, p represents the 
vector of parameters. In the macromodel of the 
arc column with the controlled voltage source 
(developed on the basis of the above-presen-
ted equation) it is possible to use a dependence 
analogous to (13)
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The integral form of the mathematical 
Mayr-Pentegov model with the variable damp-
ing function is the following 
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Similar to the Cassie equation and its modi-
fications [11], the above presented equation can 
be simplified by providing it on both sides with 
the extraction of roots. The formula obtained 
as a result is the following 
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The knowledge of state current i makes it possible to determine the efficiency of i of the controlled 
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dependent on coefficient Qp in the formula  for enthalpy [13]. As previously, p represents the vector 

of parameters. In the macromodel of the arc column with the controlled voltage source (developed 

on the basis of the above-presented equation) it is possible to use a dependence analogous to (13) 
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Similar to the Cassie equation and its modifications [11], the above presented equation can be 

simplified by providing it on both sides with the extraction of roots. The formula obtained as a 

result is the following  
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Based on the calculated value of state current and conductance using  
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it is possible to determine the efficiency of appropriately directed current source representing non-

linear resistance.
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time constant. The above-named states were ob-
served during the experimental tests of arc [14].  
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The general form of the static current-voltage characteristic has the following form  
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Figures 1 and 2 present the diagrams of current-voltage characteristics expressed by formula (23) 

and corresponding diagrams of conductance characteristics (24). The minimum values of 

conductance G(I = 0) > 0 S and, at the same time, the values of the components of conductance at 

this point (Fig. 3) reach a finite maximum. In accordance with formula (18), the foregoing provides 

the maximum value of the time constant. The above-named states were observed during the 

experimental tests of arc [14].   
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a) b) 

Fig. 1. Static characteristics of arc described by formulas 
(23) and (24) (PM = 400 W, IM = 2A, Rp = 0,1 Ω;):  

a) current-voltage characteristic U(I, p); b) conductance 
characteristic G(I2, p)  

a) b)

Fig. 2. Static characteristics of arc described by formulas 
(23) and (24) (PM = 400 W, IM = 2A, UC = 30V):  

a) current-voltage characteristic U(I, p); b) conductance 
characteristic G(I2, p)  

a) b)

Fig. 3. Characteristics of the derivative of electric arc con-
ductance dG(I2,p)/dI2 described by formula (25)  

(PM = 400 W, IM = 2A): a) characteristic with resistance  
Rp = 0,1 Ω; b) characteristic with voltage UC = 30V  

a) b)
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Results of simulations of differential 
and integral models in the 
macromodelling of electric arc 
The effectiveness of the differential and integral 
mathematical models and corresponding mac-
romodels with controlled sources was verified 
through the simulation of processes in the elec-
tric circuit. Excitation was obtained using the 
source of current generating trapezoid bipolar 
waveform (amplitude Im = 160 A, up-slope and 
down-slope of 96 000 A/s) and a frequency of 
50 Hz. The adopted simplification consisted in 
ignoring near-electrode voltage drops as they 
could be “roughly” treated as components of 
voltage UC. Because of the restrictions related to 
the volume of work, the diagrams present fam-
ilies of dynamic characteristics. The blue colour 
and the red colour indicate the results obtained 
using the differential mathematical models, 
whereas the green colour and the brown colour 
indicate the results obtained using the mathem-
atical models in the integral form. The use of the 
same parameters resulted in the overlapping of 
the results of the tests of the differential models 
with those of the integral ones. For this reason it 
was necessary to use varying parameters in order 
to present the effect of their changes on tenden-
cies of dynamic current-voltage characteristics 
to undergo deformations. The macromodels util-
ising the integral form of mathematical models 
and controlled current sources were character-
ised by the higher stability of simulation pro-
cesses in relation to low damping function (time 
constant) values. 

Figure 4 presents the dynamic cur-
rent-voltage characteristics of arc described us-
ing the Novikov-Schellhase model. The static 
characteristic used in the aforesaid model was 
expressed by formula (23). As expected, an 
increase in parameter UC resulted in the de-
formation and shifting of the branches of the 
characteristics towards higher voltage. In turn, 
an increase in parameter Rp resulted in the 
deformation of the characteristics within the 
high-current range.  

Figure 5 presents the dynamic cur-
rent-voltage characteristics of arc described by 
the Pentegov model (10)-(16). Also in the afore-
said case, the static characteristic was used (23). 
The tests involved an increase in  parameters 
PM and UC, which, shifted the characteristics 
towards higher voltage. Afterwards, paramet-
ers PM and Rp were increased, which resulted 
not only in shifting the characteristics towards 
higher voltage, but also in their deformation, 
particularly in the high-current range.

Fig. 4. Dynamic characteristics of electric arc  
(PM = 400 W, IM = 2 A, q = 1⋅10-4 s):  

a) characteristic described by formulas (6) and (7)  
(Rp = 0.1 Ω, UC = 20 V [blue line], 40 V [green line],  

60 V [red line], 80 V [brown line]);  
b) characteristic described by formulas (8) and (9)  

(UC = 50 V, Rp = 0.02 Ω [blue line] , 0.1 Ω [green line],  
0.2 Ω [red line], 0.3 Ω [brown line])

a) b)

Fig. 5. Dynamic characteristics of electric arc  
(IM = 2 A, q = 1⋅10-4 s): 

a) characteristic described by formulas (10) and (13)  
(Rp = 0.05 Ω; PM = 150 W, UC = 30 V [blue line]; PM = 300 W, 
UC = 40 V [green line]; PM = 450 W, UC = 50 V [red line]; 

PM = 600 W, UC = 60 V [brown line]); b) characteristic 
described by formulas (15) and (16) (UC =40 V; PM = 150 
W, Rp = 0.05 Ω [blue line]; PM = 300 W, Rp = 0.1 Ω [green 

line]; PM = 450 W, Rp = 0.2 Ω [red line]; PM = 600 W,  
Rp = 0.3 Ω [brown line])

a) b)

http://creativecommons.org/licenses/by-nc/3.0/
http://bulletin.is.gliwice.pl/


No. 1/202046 BIULETYN INSTYTUTU SPAWALNICTWA

Figure 6 presents the dynamic current-voltage 
characteristics of arc described by Mayr-Pen-
tegov model (17)-(22). The case involved the 
use of the static characteristic, expressed by 
formulas (23) and (24) and the simultaneous 
changes of several parameters. Similar to the 
previous case, it was possible to notice the shift-
ing and deformation of the shape of the dy-
namic characteristics.  

Conclusions
The integral forms of the mathematical mod-
els of arc, involving the use of current-voltage 
characteristics, make it possible to extend the 
libraries of simulation programmes by includ-
ing new macromodels characterised by at least 
the same effectiveness as the macromodels util-
ising differential models.

The shape of the static characteristic adopted 
in the tests was sufficiently universal so that (as 
was demonstrated by the simulation results) the 
macromodels developed using the aforesaid char-
acteristic could be used in the modelling of states 
of operation of many electrotechnical devices. 

The sequence of the consideration of math-
ematical models used in the article was 

characterised by the gradual weakening of ad-
opted simplifying conditions. As a result, the 
final Mayr-Pentegov model may most closely 
represent actual processes occurring in circuits 
with electric arc.

References: 
[1] Sawicki A., Haltof M.: Wykorzys-

tanie identyfikowanych modeli łuku 
elektrycznego do CAD urządzeń elektrycz-
nych. Przegląd Elektrotechniczny (Elec-
trical Review), 2017, vol. 93, no. 3, pp. 
20–23 (doi: 10.15199/48.2017.03.05). 
http://sigma-not.pl/pub-
likacja-104292-2017-3.html

[2] Sawicki A.: Diagnostyka imitatorów łuku 
z określonym lub zredukowanym napię-
ciem zapłonu. Konferencja MKM 2019, 
Opole–Moszna 23–25.09.2019. Zeszyty 
Naukowe Wydziału Elektrotechniki i Auto-
matyki Politechniki Gdańskiej, 2019, no. 
66, pp. 79–84 (doi: 10.32016/1.66.17).

[3] Marciniak L.: Modelowanie zwarć doziem-
nych łukowych w sieciach średniego napię-
cia. Przegląd Elektrotechniczny, 2009, no. 
3, pp. 188–191. 
http://sigma-not.pl/publikacja-92815-2015-8.html

[4] Sawicki A.: Klasyczne i zmodyfikowane 
modele matematyczne łuku elektrycznego. 
Biuletyn Instytutu Spawalnictwa, 2019, no. 
4, pp. 73–76. 
http://dx.doi.org/10.17729/ebis.2019.4/7

[5] Diatczyk J., Jaroszynski L., Komarzyniec 
G., Stryczewska H.D.: Modelowanie reak-
torów ze ślizgającym się wyładowaniem 
łukowym. [W:] Janowski T. (red.): Tech-
nologie nadprzewodnikowe i plazmowe 
w energetyce. Lubelskie Towarzystwo 
Naukowe, Lublin, 2009, pp. 207–239.

[6] Jaroszyński L., Stryczewska H.D.: Com-
puter simulation of the electric discharge 
in glidarc plasma reactor. Conference: 3rd 
International Conference: Electromagnetic 
devices and processes in environment pro-
tection ELMECO-3, June 2000. 

Fig. 6. Dynamic characteristics of electric arc  
(IM = 2 A, q = 1⋅10-4 s): a) characteristic described  
by formulas (17) and (19) (PM = 400 W, UC = 30 V,  

Rp = 0.1 Ω, Qp = 0.1 J [blue line]; PM = 400 W, UC = 40 V, 
Rp = 0.1 Ω, Qp = 0.2 J [green line]; PM = 300 W,  

UC = 50 V, Rp = 0.2 Ω, Qp = 0.3 J [red line]; PM = 500 W, 
UC = 60 V, Rp = 0.1 Ω, Qp = 0.4 J [brown line]);  

b) characteristic described by formulas (21) and (22)  
(PM = 400 W; UC = 60 V, Rp = 0.3 Ω, Qp = 0.4 J [blue 

line]; UC = 50 V, Rp = 0.05 Ω, Qp = 0.3 J [green line]; UC 
= 60 V, Rp = 0.1 Ω, Qp = 0.2 J [red line]; UC = 50 V, Rp = 

0.05 Ω, Qp = 0.1 J [brown line])

a) b)

http://bulletin.is.gliwice.pl/
http://creativecommons.org/licenses/by-nc/3.0/


BIULETYN INSTYTUTU SPAWALNICTWANo. 1/2020 47

[7] Sawicki A.: Modele dynamiczne łuku ele-
ktrycznego wykorzystujące charakterystyki 
statyczne. Śląskie Wiadomości Elektryczne, 
2012, vol. 105, no. 6, pp. 13–19. 

[8] Novikov O.Â.: Ustojčivostʹ èlektričeskoj 
dugi. Ènergiâ, L. 1978. 

[9] Šelʹgaze M.:Matematičeskaâ modelʹ pe-
rehodnyh processov v svaročnoj duge i ee 
issledovaniâ. Avtomatičeskaâ svarka, 1971. 
no. 7, pp. 13–16. 

[10] Pentegov I.V., Sidorec V.N.: Sravnitelʹnyj 
analiz modelej dinamičeskoj svaročnoj 
dugi, Avtomat. svarka, 1989, no. 2, pp. 
33–36. 

[11] Sawicki A.: Modele matematyczne 
różniczkowe i całkowe w makromod-
elowaniu łuku elektrycznego z wykorzysta-
niem  
źródeł sterowanych napięciowych i 
prądowych. Cz. 1. Warianty makromod-
eli łuku elektrycznego zadawane przez 

różne postacie równań różniczkowych lub 
całkowych. Biuletyn Instytutu Spawalnict-
wa, 2019, no. 6, pp. 67–72. 
http://sigma-not.pl/publikac-
ja-102004-2016-11.html

[12] Wąsowicz S.: Zmodyfikowany model 
Mayra-Pentegowa z parametrami (Często-
chowa 2019. – unpublished work).

[13] Sawicki A.: The universal Mayr-Pentegov 
model of the electric arc. Przegląd Elektro-
techniczny (Electrical Review), 2019, vol. 
94, no. 12, pp. 208–211.  
http://sigma-not.pl/publikac-
ja-123729-2019-12.html

[14] Kalasek V.K.I.: Measurements of time 
constants on cascade d.c. arc in nitrogen. 
EUT report. E, Fac. of Electrical Engineer-
ing; vol. 71-E-18, Technische Hogeschool 
Eindhoven, Eindhoven 1971.

http://creativecommons.org/licenses/by-nc/3.0/
http://bulletin.is.gliwice.pl/
http://yadda.icm.edu.pl/yadda/contributor/a6348a1d54a93540b592fc780f283fa2
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-aeb47130-e523-4cd6-8d94-25d877177392
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-56bffa74-f4c0-4964-a999-8efef736a069
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-18cb2f70-b1aa-4c87-bef4-cb0b463c5389
http://yadda.icm.edu.pl/yadda/contributor/a6348a1d54a93540b592fc780f283fa2

